MARINE ENVIRONMENTAL, SAFETY AND QUALITY ASSURANCE CRITERIA

FOR

INTERNATIONAL OCEAN/SEAGOING TANKER VESSELS IN EXXONMOBIL AFFILIATE SERVICE

2017 Edition

INTERNATIONAL MARINE TRANSPORTATION SINGAPORE PTE. LTD.
8 Jurong Town Hall Road
#11-01/06, The JTC Summit, Singapore 609434
INDEX

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>SUITABILITY TO CARRY EXXONMOBIL AFFILIATE CARGOES</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>CHANGE OF OWNER AND/OR TECHNICAL OPERATOR</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>TANKER MANAGEMENT SELF ASSESSMENT (TMSA)</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>THIRD PARTY VESSEL INSPECTIONS</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>INCIDENT NOTIFICATION AND INVESTIGATION</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>MARINE ENVIRONMENTAL, SAFETY AND QUALITY ASSURANCE CRITERIAS</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SECTION A</td>
<td>GENERAL INFORMATION</td>
<td>12</td>
</tr>
<tr>
<td>SECTION B</td>
<td>CREW MANAGEMENT</td>
<td>13</td>
</tr>
<tr>
<td>SECTION C</td>
<td>CREW MATRIX REQUIREMENTS</td>
<td>15</td>
</tr>
<tr>
<td>SECTION D</td>
<td>NAVIGATION</td>
<td>17</td>
</tr>
<tr>
<td>SECTION E</td>
<td>SAFETY AND SECURITY MANAGEMENT</td>
<td>20</td>
</tr>
<tr>
<td>SECTION F</td>
<td>POLLUTION PREVENTION</td>
<td>24</td>
</tr>
<tr>
<td>SECTION G</td>
<td>STRUCTURAL CONDITION</td>
<td>28</td>
</tr>
<tr>
<td>SECTION H</td>
<td>CARGO AND BALLAST SYSTEMS</td>
<td>31</td>
</tr>
<tr>
<td>SECTION J</td>
<td>INERT GAS AND CRUDE OIL WASHING SYSTEMS</td>
<td>36</td>
</tr>
<tr>
<td>SECTION K</td>
<td>MOORING</td>
<td>38</td>
</tr>
<tr>
<td>SECTION L</td>
<td>COMMUNICATIONS</td>
<td>41</td>
</tr>
<tr>
<td>SECTION M</td>
<td>ENGINE ROOM AND STEERING GEAR</td>
<td>42</td>
</tr>
<tr>
<td>SECTION N</td>
<td>GENERAL APPEARANCE AND CONDITION</td>
<td>45</td>
</tr>
<tr>
<td>SECTION P</td>
<td>SHIP TO SHIP TRANSFER SUPPLEMENT</td>
<td>46</td>
</tr>
<tr>
<td>SECTION Q</td>
<td>ICE OPERATIONS</td>
<td>47</td>
</tr>
<tr>
<td>SECTION R</td>
<td>CHEMICAL CARRIER SUPPLEMENT</td>
<td>48</td>
</tr>
<tr>
<td>SECTION S</td>
<td>GAS CARRIER SUPPLEMENT</td>
<td>49</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>ADDITIONAL CRITERIA FOR TERM CHARTERED TONNAGE</td>
<td>51</td>
</tr>
<tr>
<td>APPENDIX B</td>
<td>DRUG AND ALCOHOL DECLARATION</td>
<td>57</td>
</tr>
<tr>
<td>APPENDIX C</td>
<td>MESQAC COMPLIANCE DECLARATION</td>
<td>58</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABM</td>
<td>All Buoy Mooring</td>
</tr>
<tr>
<td>ARPA</td>
<td>Automatic Radar Plotting Aid</td>
</tr>
<tr>
<td>AUS</td>
<td>Automatic Unloading System</td>
</tr>
<tr>
<td>BCH</td>
<td>Code for the Construction and Equipment of ships carrying Dangerous Chemicals in Bulk</td>
</tr>
<tr>
<td>BNWAS</td>
<td>Bridge Navigational Watch Alarm System</td>
</tr>
<tr>
<td>CAP</td>
<td>Condition Assessment Program</td>
</tr>
<tr>
<td>CCR</td>
<td>Cargo Control Room</td>
</tr>
<tr>
<td>CDI</td>
<td>Chemical Distribution Institute</td>
</tr>
<tr>
<td>COLREGS</td>
<td>Collision Regulations</td>
</tr>
<tr>
<td>COW</td>
<td>Crude Oil washing</td>
</tr>
<tr>
<td>CSR</td>
<td>Common Structural Rules</td>
</tr>
<tr>
<td>DH</td>
<td>Double Hull</td>
</tr>
<tr>
<td>DRS</td>
<td>Defect Reporting System</td>
</tr>
<tr>
<td>DWT</td>
<td>Deadweight (Summer Deadweight in Metric Tons)</td>
</tr>
<tr>
<td>ECDIS</td>
<td>Electronic Chart Display and Information System</td>
</tr>
<tr>
<td>ECM</td>
<td>Energy Conservation Measures</td>
</tr>
<tr>
<td>ECS</td>
<td>Electronic Chart System</td>
</tr>
<tr>
<td>EEOI</td>
<td>Energy Efficiency Operational Index</td>
</tr>
<tr>
<td>ESD</td>
<td>Emergency Shut Down</td>
</tr>
<tr>
<td>ESP</td>
<td>Enhanced Survey Program</td>
</tr>
<tr>
<td>ETA</td>
<td>Emergency Towing Arrangement</td>
</tr>
<tr>
<td>GMDSS</td>
<td>Global Maritime Distress and Safety System</td>
</tr>
<tr>
<td>GOM</td>
<td>Gulf of Mexico</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>H2S</td>
<td>Hydrogen Sulfide</td>
</tr>
<tr>
<td>HFO</td>
<td>Heavy Fuel Oil</td>
</tr>
<tr>
<td>IBC</td>
<td>International Bulk Chemical Code</td>
</tr>
<tr>
<td>ICS</td>
<td>International Chamber of Shipping</td>
</tr>
<tr>
<td>IFC</td>
<td>Information Fusion Centre</td>
</tr>
<tr>
<td>IGC</td>
<td>International Code for the Construction and Equipment of ships carrying Dangerous Chemicals in Bulk</td>
</tr>
<tr>
<td>IGS</td>
<td>Inert Gas System</td>
</tr>
<tr>
<td>IMO</td>
<td>International Maritime Organization</td>
</tr>
<tr>
<td>IMT</td>
<td>International Marine Transportation Ltd</td>
</tr>
<tr>
<td>ISF</td>
<td>International Shipping Federation</td>
</tr>
<tr>
<td>ISGOTT</td>
<td>The International Safety Guide for Oil Tankers and Terminals</td>
</tr>
<tr>
<td>ISM</td>
<td>International Safety Management (ISM) Code</td>
</tr>
<tr>
<td>ISPS</td>
<td>The International Ship and Port Facility Security (ISPS) Code</td>
</tr>
<tr>
<td>LNG</td>
<td>Liquefied Natural Gas</td>
</tr>
<tr>
<td>LPG</td>
<td>Liquefied Petroleum Gas</td>
</tr>
<tr>
<td>LR</td>
<td>Lloyd’s Register</td>
</tr>
<tr>
<td>MARPOL</td>
<td>International Convention for the Prevention of Pollution from Ships</td>
</tr>
<tr>
<td>MBM</td>
<td>Multi Buoy Mooring</td>
</tr>
<tr>
<td>MEG</td>
<td>Mooring Equipment Guidelines</td>
</tr>
<tr>
<td>MESQAC</td>
<td>Marine Environmental, Safety and Quality Assurance Criteria</td>
</tr>
<tr>
<td>MGO</td>
<td>Marine Gas Oil</td>
</tr>
<tr>
<td>MLC</td>
<td>Maritime Labour Convention</td>
</tr>
<tr>
<td>MSC-HOA</td>
<td>Maritime Security Centre – Horn of Africa</td>
</tr>
<tr>
<td>MSDS</td>
<td>Material Safety Data Sheet</td>
</tr>
<tr>
<td>MTISC-GoG</td>
<td>Maritime Trade Information Sharing Centre – Gulf of Guinea</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MWP</td>
<td>Maximum Working Pressure</td>
</tr>
<tr>
<td>OBO</td>
<td>Oil Bulk Ore</td>
</tr>
<tr>
<td>OCIMF</td>
<td>Oil Companies International Marine Forum</td>
</tr>
<tr>
<td>ODME</td>
<td>Oil Discharge Monitoring Equipment</td>
</tr>
<tr>
<td>OOW</td>
<td>Officer of the Watch</td>
</tr>
<tr>
<td>OPRE</td>
<td>Oil Pollution Preparedness, Response and Coordination Convention</td>
</tr>
<tr>
<td>OWS</td>
<td>Oily Water Separator</td>
</tr>
<tr>
<td>P/V</td>
<td>Pressure/Vacuum</td>
</tr>
<tr>
<td>PMS</td>
<td>Planned Maintenance System</td>
</tr>
<tr>
<td>PPE</td>
<td>Personal Protective Equipment</td>
</tr>
<tr>
<td>PTW</td>
<td>Permit to work System</td>
</tr>
<tr>
<td>RPM</td>
<td>Revolutions Per Minute</td>
</tr>
<tr>
<td>SEEMP</td>
<td>Ship Energy Efficiency Management Plan</td>
</tr>
<tr>
<td>SIGTTO</td>
<td>The Society of International Gas Tanker and Terminal Operators</td>
</tr>
<tr>
<td>SIRE</td>
<td>Ship Inspection Report Program</td>
</tr>
<tr>
<td>SMS</td>
<td>Safety Management System</td>
</tr>
<tr>
<td>SOLAS</td>
<td>International Convention for the Safety of Life at Sea</td>
</tr>
<tr>
<td>SOPEP</td>
<td>Shipboard Oil Pollution Emergency Plan</td>
</tr>
<tr>
<td>SPM</td>
<td>Single Point Mooring</td>
</tr>
<tr>
<td>SRM</td>
<td>SeaRiver Maritime Inc</td>
</tr>
<tr>
<td>SSP</td>
<td>Ship Security Plan</td>
</tr>
<tr>
<td>STCW</td>
<td>IMO Standard of Training, Certification and Watchkeeping for Seafarers</td>
</tr>
<tr>
<td>STS</td>
<td>Ship to Ship Operation</td>
</tr>
<tr>
<td>S-VDR</td>
<td>Simplified Voyage Data Recorder</td>
</tr>
<tr>
<td>SWL</td>
<td>Safe Working Load</td>
</tr>
<tr>
<td>TMSA</td>
<td>Tanker Management Self-Assessment</td>
</tr>
<tr>
<td>UKC</td>
<td>Under Keel Clearance</td>
</tr>
<tr>
<td>UKMTO</td>
<td>United Kingdom Maritime Trade Operations</td>
</tr>
<tr>
<td>UMS</td>
<td>Unmanned Machinery Spaces</td>
</tr>
<tr>
<td>USCG</td>
<td>United State Coast Guard</td>
</tr>
<tr>
<td>VDR</td>
<td>Voyage Data Recorder</td>
</tr>
<tr>
<td>VPMS</td>
<td>Vessel Performance Monitoring System</td>
</tr>
<tr>
<td>VPQ</td>
<td>Vessel Particular Questionnaire</td>
</tr>
<tr>
<td>VRP</td>
<td>Vessel Response Plan</td>
</tr>
</tbody>
</table>
Introduction

This document has been produced by International Marine Transportation (IMT) Singapore Pte Ltd., which jointly uses a standard methodology with International Marine Transportation Limited and SeaRiver Maritime Inc. to provide vetting services to all ExxonMobil affiliates engaged in marine transportation using third party vessels. This document is referred to in short as MESQAC and applies to International Ocean/Seagoing tanker vessels in ExxonMobil affiliate service, regardless of deadweight or vessel type and henceforth referred to either as ‘third party vessels’ or, if appropriate, just simply ‘vessels’.

SeaRiver Maritime (SRM) assesses the suitability of ALL third party vessels for conducting lightering operations in the US Gulf of Mexico while on ExxonMobil service.

The purpose of this document is to provide vessel operators with an understanding of the marine environmental, safety and quality assurance expectations of third party vessels to be considered for ExxonMobil affiliate service. Please note that, in this context, ‘service’ means carrying ExxonMobil affiliate title cargo, chartered by ExxonMobil affiliates, calling at ExxonMobil affiliate facilities, or carrying cargo or calling at facilities in which ExxonMobil affiliates have a joint venture interest. In addition, ‘vessel operator’ refers to the technical manager having day-to-day oversight of the technical management of the fleet vessels and their Safety Management Systems.

Third party vessels not meeting environmental and safety expectations or criteria described as ‘MUST’ may not be considered eligible for ExxonMobil affiliate service. If meeting certain of these expectations or criteria involves gas freeing or dry docking the vessel, or requires long lead times, a limited period for further consideration of the vessel may be granted upon receipt of written confirmation that actions will be taken at the earliest opportunity, and if documented mitigating procedures are in place. Vessels not meeting environmental and safety expectations or criteria described as ‘Strongly Preferred’ may be disadvantaged in the selection process versus other vessels meeting those requirements.

Third party vessels MUST be in full compliance with all applicable international conventions, laws, regulations and other requirements of the country of vessel registry, and of the countries, states, and/or port authorities of the ports and/or places, including facilities, to which the vessel may be ordered while in ExxonMobil affiliate service, and/or the applicable regulations or requirements of any terminals or facilities in such ports or places where the vessel will load or discharge. Vessels MUST have on-board, all certificates, records or other documents required by the aforesaid conventions, laws, regulations and/or requirements.

Vessel operators MUST familiarize themselves with information regarding vessel inspections contained in MESQAC. It is the responsibility of the vessel operator to ensure their vessels meet or exceed MESQAC expectations and criteria and can demonstrate compliance through an inspection report or on-board MESQAC checks. Vessel operators need to be aware of the potential vetting consequences and implications of not meeting ‘MUST’ or ‘Strongly Preferred’ expectations or criteria.

Only currently valid ship inspection reports held in databases administered by either the Oil Companies International Marine Forum (OCIMF) or the Chemical Distribution Institute (CDI) will be evaluated.

It is Strongly Preferred that SIRE/CDI reports are no more than six months old.

Questions or comments regarding MESQAC should be addressed to msscreen@exxonmobil.com

Additional Marine Environmental, Safety, and Quality Assurance Criteria for vessels in ExxonMobil affiliate Term Charter service are set out in Appendix A to this publication.
Notice:

1. Throughout this document, unless otherwise stated, all references to industry publications, guidelines, recommendations and information papers refer to the latest edition available. Similarly, all references to governmental international/national conventions, guidelines, rules, regulations, resolutions and standards refer to those currently in date/force and applicable.

2. IMT does not endorse or approve any vendor’s equipment, design, and systems or make any representations regarding compliance of any vessel equipment, design and systems with MESQAC requirements.

3. The MESQAC sets out the criteria by which IMT and its affiliates provide vetting services. It is not intended to provide readers with, and should not be relied upon by readers as, definitive or exhaustive guidance on the safe or proper operation of ships.
SUITSABILITY TO CARRY EXXONMOBIL AFFILIATE CARGOES

Operators of third party vessels are reminded that vessels are not pre-approved for ExxonMobil affiliate service. All vessels are evaluated using the latest information available each time they are nominated for ExxonMobil service, or when calling at terminals or facilities where ExxonMobil has an interest.

CHANGE OF OWNER AND/OR TECHNICAL OPERATOR

Data for all vessels, including when taking delivery of new vessels, vessels that are sold, assigned a new technical operator, or change classification society, is used in the vetting process.

IMT automatically downloads vessel- and operator-specific data from IHS Fairplay. Vessel operators are strongly advised to promptly notify IHS Fairplay of any of the above-mentioned changes by contacting IHS Fairplay at the following email address: shipsinservice@ihis.com

Vessel operators should also directly inform IMT of all above-mentioned changes including advance notice of changes to the email address: Msowner@exxonmobil.com

TANKER MANAGEMENT SELF ASSESSMENT (TMSA)

The management and operation of vessels within a culture of safety and environmental excellence has been formalized with the implementation of the International Safety Management (ISM) Code. OCIMF’s TMSA program builds upon the ISM Code and is used as a tool to help vessel operators assess, measure and improve their Safety Management Systems.

The TMSA program encourages vessel operators to assess their Safety Management Systems against listed key performance indicators and provides recognized best practice guidance for each indicator.

Vessel operators are assessed on factors which include the effectiveness of their Safety Management System, fleet safety, and environmental performance. When submitting TMSAs to OCIMF, vessel operators must select ‘International Marine Transportation’ from the report recipient list in order to allow IMT vetting organizations to be able to review the operator’s TMSA submission.

In order for a vessel to be considered for ExxonMobil affiliate service, the vessel's operator MUST have submitted a TMSA with a ‘created date’ within the past twelve months and has selected ‘International Marine Transportation’ as a report recipient. Vessels operated by a company which has not submitted a valid TMSA or has not achieved Stage 1 compliance may not be acceptable for ExxonMobil affiliate service. Further updated TMSA submissions should be submitted via www.ocimf-tmsa.com whenever a vessel operator considers it has made material changes to its Safety Management System. At the minimum, a vessel operator should make a submission at intervals not exceeding twelve months. By doing this, the vessel operator is able to demonstrate that its management has undertaken a formal review of its Safety Management System.

It is expected that a vessel operator’s entire TMSA submission will have been reviewed and endorsed by its senior management as an accurate assessment of the vessel operator’s current Safety Management System.

IMT may periodically request to visit a vessel operator’s offices with the primary aim of making an assessment as to the accuracy of an operator’s most recent TMSA submission. These visits are referred to as TMSA Review Meetings and use standard audit techniques to verify the accuracy of the TMSA submission and gauge the processes and procedures put in place to achieve the expectations of the sampled element.

A structured and systematic approach is taken when conducting a TMSA review. To facilitate this, the IMT review team uses a proprietary document and examines the vessel operator’s most recent TMSA submission. It is important to note that a TMSA Review Meeting is not an audit and no written report
or documented non-conformances will be issued. Vessel operators will, however, be provided with verbal feedback during and at the end of the review and should use this opportunity to seek verbal clarification and understanding of IMT’s interpretation of TMSA key performance indicators.

Following a TMSA Review Meeting, a vessel operator may be asked to re-assess its TMSA submission and re-submit the TMSA at the earliest opportunity. It is important that the vessel operator undertakes this as soon as is reasonably possible. IMT may also require the vessel operator to submit evidence supporting closure of an observation or misalignment noted during the TMSA review.

For further details of the OCIMF TMSA Program, go to www.ocimf-tmsa.com.

For assistance with any TMSA issues concerning ExxonMobil affiliate vetting please email: MSOwner@exxonmobil.com

Besides the TMSA review of management system in vessel operator’s office, IMT may also request to carry out an on-board TMSA review on one or more of their fleet vessels. The scope of an on-board TMSA review is limited to the OCIMF TMSA content applicable to shipboard operations. The purpose of the on-board TMSA is to verify that there is effective implementation of the vessel operators Safety Management System throughout the operator’s organization, including on-board the vessels.

THIRD PARTY VESSEL INSPECTIONS

evaluations of inspection reports of third party vessels are conducted in order to ascertain whether these vessels meet applicable IMT expectations. SIRE and CDI reports will be used.

Third party vessel inspections, other than a vessel Term Chartered to an ExxonMobil affiliate, can be requested by contacting IMT via msinspect@exxonmobil.com;

An inspection request for a third party vessel term chartered to an ExxonMobil affiliate should be sent at msterm@exxonmobil.com

All SIRE inspections arranged by IMT will be undertaken by OCIMF accredited inspectors. Inspections are arranged through, and with the permission of, the vessel operator. It is necessary that the vessel operator advises the vessel Master and the appropriate port agent of inspection arrangements. On-boarding the vessel, inspectors are instructed to report to the Master, or the Officer of the Watch (OOW) if the Master is not available.

Inspections arranged by IMT will be conducted in accordance with the OCIMF guidelines. On completion of the inspection, and prior to departing the vessel, inspectors will conduct a verbal close-out meeting to summarize findings with the Master or the Master’s representative. Master or the Master’s representatives are encouraged to repeat the findings to the inspector to eliminate any doubts in the understanding during the verbal close out.

Please note that following an inspection, the vessel operator MUST respond to OCIMF / CDI explaining the cause and corrective actions to address the observations identified in the report. Failure to provide satisfactory evidence that observations have been addressed may result in the vessel being considered unsuitable for ExxonMobil affiliate service. Please note providing a satisfactory response or evidence that observations have been addressed does not guarantee the vessel being considered suitable for ExxonMobil affiliate service.

INSPECTION SYSTEMS

IMT supports the use of the OCIMF SIRE uniform vessel inspection procedure and the CDI inspection system. The vessel operators MUST understand these industry vessel inspection formats and familiarize themselves with the associated procedures and advise their Masters accordingly. It is required that an up-to-date Vessel Particulars Questionnaire (VPQ) be available in the SIRE/CDI systems.
INSPECTION RESULTS

Failure to present the vessel for inspection in good condition or appearance will be regarded as evidence of a failure of the vessel and the vessel operator’s management systems. In this case, the vessel may not be considered for use following completion of corrective actions and the vessel operator’s eligibility for ExxonMobil affiliate service may also be adversely affected. Once a SIRE/CDI inspection has been carried out, the vessel operator MUST respond to the observations raised in the SIRE/CDI inspection report within the timeframe stipulated by OCIMF/CDI.

Please note that the satisfactory completion of an inspection conducted by IMT does not imply and should not be construed as an approval of the vessel for ExxonMobil affiliate service.

INCIDENT NOTIFICATION AND INVESTIGATION

ExxonMobil charter party agreements and/or voyage orders contain specific instructions with regard to incident notification requirements and reporting procedures.

As stipulated in the charter party agreements, vessels on charter to an ExxonMobil affiliate may be subject to an investigation by a representative of the vetting organizations to ascertain the cause of any incidents. A vessel's Master or vessel operator is required to promptly notify IMT if the vessel is involved in any incident, accident or casualty in accordance with the charter party and/or voyage orders as reflected in the list below, which is also provided for guidance to vessels not on charter to an ExxonMobil affiliate (see guidance below):

DEFINITION OF INCIDENT

Vessels involved in an incident may include, but are not limited to:

- Fatality or work-related injury resulting in lost time incidents;
- Collision or contact with other vessels;
- Grounding or bottom touch;
- Pollution, including accidental or uncontrolled release of cargo vapor or gas releases irrespective of the quantity released;
- Oil spill on deck or other locations on-board including release of cargo, bunker, lube oil, or hydraulic oil etc.;
- Fire or explosion;
- Cargo system or transfer hose or arm ‘pressing’ or over pressurization due to inadvertent valve closure ashore or on-board;
- Mooring related incident including rope parting, mooring equipment damage, etc.;
- Anchoring incidents including anchor dragging, anchor fouling, anchor loss etc.
- Structural damage including indentations, internal/external cracks etc.;
- Allison (contact) with fixed objects including jetties, SBM, SPM, locks, bridges, buoys, ice etc.;
- Failure or breakdown of vessel’s equipment including, but not limited to, main and auxiliary engine or cargo handling machinery and navigational equipment;
- Drug and alcohol policy violation;
- Cargo loss, contamination, or reaction (e.g.: solidifying, etc.);
- Port state detentions;
- Seizure or arrest;
- Security related incidents including attempted and actual piracy or robbery attacks, security breaches etc.; and
- Media coverage.
INCIDENT NOTIFICATION

Vessels NOT on ExxonMobil affiliate charter

Incidents as defined above which occur whilst the vessel is not on ExxonMobil affiliate charter MUST be promptly reported to IMT at incident@exxonmobil.com or via the OCIMF vessel incident repository linked to the SIRE Database, as incident closure is part of the vetting approval process.

Vessels on ExxonMobil affiliate charter

Incidents as defined above which occur whilst the vessel is on ExxonMobil affiliate charter MUST be promptly sent in line with the notification procedures detailed within the charter party and/or voyage orders. As defined in the charter party/voyage orders incidents MUST also be reported to incident@exxonmobil.com

*Not reporting or delayed reporting of incidents whether the vessel is on ExxonMobil affiliate charter or not could affect vessel operator’s future eligibility for ExxonMobil affiliate service.

INCIDENT INVESTIGATION AND CLOSURE

Following an incident, an investigation report MUST be submitted by the vessel operator to incident@exxonmobil.com

The incident investigation process MUST identify root causes and effective preventative actions taken to avoid re-occurrence of similar incidents on-board any of the vessels within the vessel operator’s fleet. Satisfactory closure of an incident is an important part of IMT’s vetting process.
REVIEW OF INCIDENT INVESTIGATION REPORTS

On receipt of incident investigation report a detailed review is carried out by IMT.

IMT’s minimum expectations from an incident investigation report are (as a minimum, but not limited to) as follows:

<table>
<thead>
<tr>
<th>Description</th>
<th>Detailed sequence of the event or narrative of events. Photographs, pipeline diagrams, Electronic Chart and Information Display System (ECDIS)/ radar screenshots etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrective actions</td>
<td>Actions taken post incident to gain control of the situation and resume operations.</td>
</tr>
<tr>
<td>Non-contributory factors</td>
<td>Factors considered but ruled out as having caused the incident. e.g. Work and rest hours, rank and company experience of crew, traffic and weather conditions, drug and alcohol compliance; equipment maintenance etc.</td>
</tr>
<tr>
<td>Causal factors, Immediate causes,</td>
<td>Any condition that if corrected, could have prevented the incident from occurring or reduced the impact of the incident. e.g.- In the case of product release, causal factors could be: Incorrect cargo line up / no two man check etc.</td>
</tr>
<tr>
<td>Direct Causes</td>
<td>Basic cause (or causes) that if fixed will prevent the incident’s recurrence. e.g.- In the case of a spill, root causes could be: Inadequate behaviour based safety program (non-compliance of procedures), lack of management oversight / weak Safety Management System etc.</td>
</tr>
<tr>
<td>Preventative measures</td>
<td>Measures identified towards prevention of similar incidents fleet wide. Timeline to complete each identified preventative measure. Plans to verify the effectiveness of preventative measures.</td>
</tr>
<tr>
<td>Lessons learned, experience sharing</td>
<td>Key learnings from this incident.; Experience sharing through Safety and technical bulletins / Crew seminars. / Shore management visits.</td>
</tr>
<tr>
<td>Supporting documents</td>
<td>• Class attendance report / latest class survey status report. • Service engineer’s / technicians’ reports. • Evidence of experience sharing fleet wide. • Regulatory authorities’ reports (e.g. port State control/flag State/water police etc.) • Crew experience matrix during the incident etc.</td>
</tr>
</tbody>
</table>

It is **Strongly Preferred** that the vessel operator’s senior management fully endorses the incident investigation report before it is sent to IMT.
MARINE ENVIRONMENTAL, SAFETY AND QUALITY ASSURANCE CRITERIA

SECTION A GENERAL INFORMATION

A.1 The vessel operator MUST lodge an up-to-date copy of the Vessel Particulars’ Questionnaire (VPQ) with the OCIMF SIRE and CDI programs as applicable.

A.2 Vessel operators are reminded of the importance of accuracy of data contained within the VPQ. Technical assessments (e.g. berth fit) that may affect the commercial decision will be based on this data.

A.3 To ensure correct identification, the vessel operator MUST verify that the International Maritime Organization (IMO) number assigned to the vessel, and entered in the VPQ, corresponds exactly to the number in Lloyds’ Register of Shipping.

A.4 Vessel Operators MUST warrant an understanding of and compliance with the latest edition of the Marine Environmental, Safety and Quality Assurance Criteria (MESQAC) for vessels considered for ExxonMobil affiliate service.

Vessel Operators make the above warranty by submitting a signed Blanket MESQAC Compliance Declaration (sample as in Appendix C) to IMT. This should be sent as an email attachment to the following address: msscreen@exxonmobil.com

Vessel Operators when completing the Blanket MESQAC declaration for MUST items which they plan to address but that require a lead time or dry dock should:

1. Mark the listed vessels as compliant (Yes) along with a reference to which criteria requires lead time or dry-dock.

2. Include interim preventive, mitigative or contingency measures taken to temporarily address each case.

3. An estimate of when it is expected such vessels will be fully compliant.

In addition to on-board TMSA reviews, IMT may also request an on-board physical MESQAC check and/or on-board security checks. These check(s) may be carried out on-board one or more vessels within the vessel operators’ fleet.
SECTION B CREW MANAGEMENT

B.1 All Masters MUST have sufficient and appropriate experience as Master or Chief Officer. For recently promoted Masters this should include:

1. Recent manoeuvring experience as Chief Officer or as supernumerary on the same vessel or class of vessel having the same or similar handling characteristics; or

2. Having attended an approved ship handling simulator course at an installation capable of simulating the manoeuvring characteristics of such class of vessel.

[STCW Code – Section A1/12]

B.2 All Officers in direct control of navigation, cargo and/or bunker oil handling operations on-board tankers for seagoing service MUST have conversational proficiency in English.

The Safety Management System (SMS) manual(s) MUST be in a language readable and understood by the crew on-board.

All officers MUST possess valid certificates and licenses required for their rank and position on the vessel and the intended trade. This MUST include Dangerous Cargo Endorsements as specified in STCW, the Code for the Construction and Equipment of Ships Carrying Dangerous Chemicals in Bulk (BCH), the International Bulk Chemical Code (IBC), or the International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC).

B.3 The operator MUST ensure that Master and Deck Officers have successfully completed IMO Model Course 1.22 in ‘Ship Simulator and Bridge Teamwork’ at intervals not exceeding five years.

B.4 Officers who have immediate responsibility for cargo transfer MUST be in possession of a Certificate of Specialized Training, as applicable to the type of cargo being carried.

[STCW Code – Reg. V/1-1.3]

B.5 It is Strongly Preferred that Master and Deck Officers successfully complete an industry recognized Cargo Handling Simulator course at intervals not exceeding five years.

B.6 In addition to compliance with their Safe Manning Certificate, vessels engaged in 24-hour continuous operations MUST meet the following minimum requirements:

1. For vessels greater than 16k DWT the minimum manning level MUST consist of one Master and at least three licensed Deck Officers, and for the engine department, regardless of whether or not operating Unmanned Machinery Spaces (UMS), one Chief Engineer and at least two licensed Assistant Engineers. On non-UMS vessels, it is Strongly Preferred that the engineering department minimum manning consists of one Chief Engineer and at least three licensed Assistant Engineers.

2. For vessels less than 16k DWT - Minimum manning level MUST consist of one Master and at least two licensed Deck Officers. (It is Strongly Preferred that the minimum manning for these vessels consists of one Master and at least three licensed Deck Officers, and one Chief Engineer and at least one licensed Assistant Engineer.

Other manning arrangements may be considered following a review on a case-by-case basis. This will include a review of crew competence/experience, conditions of service, leave rotation, equipment, and procedures to address contingencies.

B.7 Documented procedures MUST be available to monitor record and control maximum hours worked and minimum rest hours to minimize fatigue in compliance with Maritime Labour

B.8 The vessel operator **MUST** warrant that it operates under an Alcohol and Drug Policy which meets or exceeds the standards set out in the ICS/OCIMF publication 'Guidelines for the Control of Drugs and Alcohol On-board Ships' and current STCW and flag state requirements. Such policy **MUST**, at a minimum, contain provisions for drug and alcohol testing that includes unannounced testing and routine medical examinations for all officers and crew, and provides for all officers and crew to be so tested at least once a year through the combined Program of unannounced testing and routine medical examinations.

The vessel operator makes the above warranty by (a) agreeing to the ExxonMobil Drug and Alcohol charter party clause and (b) submitting a signed Drug and Alcohol Blanket Declaration Note. Companies based in the USA and Canada with USA or Canadian flag vessels that respectively meet USCG or Canadian regulations for drug and alcohol testing are acceptable.

B.9 It is **Strongly Preferred** that vessels are operated under a ZERO ALCOHOL policy (carriage and/or consumption of alcohol is prohibited on-board).

B.10 All vessel operators **MUST** have documented procedures that addresses the following:

1. Measures to discourage the smuggling of drugs and alcohol onto the vessel.
2. Random unannounced checks for unauthorized possession and consumption of alcohol or drugs on-board the vessel.
3. Drug and alcohol testing following an incident or operational anomaly.
4. Testing where an individual is suspected of being under the influence of alcohol or drugs.
5. Disciplinary action where person(s) are found or suspected to be in breach of the company's drug and alcohol policy.

In addition to the above, where vessels are not operated under a ZERO ALCOHOL policy, the operator **MUST** have documented procedures that address the following:

1. System for controlling the issue and distribution of alcohol to individuals.
2. Monitoring and documenting the distribution and consumption of alcohol on-board the vessel.
3. Defined authority responsible for controlling the issue and distribution of alcohol.
4. On-board and shore side system to monitor issue and consumption of alcohol.
5. Method of verification for strict adherence to policy.

B.11 At least two officers on-board **MUST** be trained as accident/incident investigators.

B.12 The vessel operator **MUST** appoint an on-board ‘Safety Officer’ trained specific to this role.

B.13 It is **Strongly Preferred** that the vessel operator has a Behaviour Based Safety (BBS) Program.
SECTION C CREW MATRIX REQUIREMENTS

The safe operation of a vessel is a function of the competency (as per the STCW Code) and experience of the officers responsible for the execution of the vessel operators Safety Management System. Therefore, it is expected that vessels are manned with a complement that reflects an adequate amount of experience and familiarity with the vessel operator’s processes and procedures.

Crew change for management level (Senior Officers/Engineers) of the same department MUST be staggered.

The provisions of the following CREW MATRIX table(s) are Strongly Preferred:

<table>
<thead>
<tr>
<th>Experience</th>
<th>Senior Deck Officers</th>
<th>Junior Deck Officers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank</td>
<td>Master + Chief Off. (Combined)</td>
<td>2nd Off. + 3rd Off (Combined)</td>
</tr>
<tr>
<td>> Three (3) Years (Sea Time)</td>
<td>> One (1) Year (Sea Time)</td>
<td></td>
</tr>
<tr>
<td>Of the three (3) years combined, Master should have minimum six (6) months and Chief Off. should have minimum six (6) months (Sea Time)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operator</td>
<td>> Two (2) Calendar Years</td>
<td>> One (1) Calendar Year</td>
</tr>
<tr>
<td>This type of tanker</td>
<td>> Six (6) Years (Sea Time)</td>
<td>N/A</td>
</tr>
<tr>
<td>All types of tanker</td>
<td>N/A</td>
<td>> One and a half (1.5) Years (Sea Time)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Experience</th>
<th>Senior Engineers</th>
<th>Junior Engineers</th>
<th>Gas / Cargo Engineer (LNG and LPG vessel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank</td>
<td>Chief Engr. + 2nd Engr. (Combined)</td>
<td>3rd Engr. + 4th Engr. (Combined)</td>
<td>> One (1) Year (Sea Time)</td>
</tr>
<tr>
<td>> Three (3) Years (Sea Time)</td>
<td>> One (1) Year (Sea Time)</td>
<td>> One (1) Year (Sea Time)</td>
<td></td>
</tr>
<tr>
<td>Of the three (3) years combined, Chief Engineer should have minimum six (6) months and 2nd Engineer should have minimum six (6) months (Sea Time)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operator</td>
<td>> Two (2) Calendar Years</td>
<td>> One (1) Calendar year</td>
<td>> Half (0.5) Calendar Year</td>
</tr>
<tr>
<td>This type of tanker</td>
<td>> Six (6) Years (Sea Time)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>All types of tanker</td>
<td>N/A</td>
<td>> One and a half (1.5) Years (Sea time)</td>
<td>N/A</td>
</tr>
</tbody>
</table>
For vessel(s) **less than (-) 16k DWT**, where there is a reduction in the number of engineers on-board the vessel:

<table>
<thead>
<tr>
<th>Experience</th>
<th>Senior Deck Officers (Combined)</th>
<th>Junior Deck Officers (Combined)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank</td>
<td>> Three (3) Years (Sea Time)</td>
<td>> One (1) Year (Sea Time)</td>
</tr>
<tr>
<td></td>
<td>Of the three (3) years combined,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Master should have minimum six</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6) Months and Chief Off. should</td>
<td></td>
</tr>
<tr>
<td></td>
<td>have minimum six (6) months (Sea</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time)</td>
<td></td>
</tr>
<tr>
<td>Operator</td>
<td>> Two (2) Calendar Years</td>
<td>> One (1) Calendar Year</td>
</tr>
<tr>
<td>This type of tanker</td>
<td>> Six (6) Years (Sea Time)</td>
<td>N/A</td>
</tr>
<tr>
<td>All types of tanker</td>
<td>N/A</td>
<td>> One and a half (1.5) Years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Sea time)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Experience</th>
<th>Chief Engineer + Junior / Licensed Assistant Engineer(s) (Combined)</th>
<th>Gas / Cargo Engineer (LNG and LPG vessel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank</td>
<td>> Three (3) Years (Sea Time)</td>
<td>> One (1) Year (Sea Time)</td>
</tr>
<tr>
<td></td>
<td>Of the three (3) years combined, C/E should have minimum six (6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Months</td>
<td></td>
</tr>
<tr>
<td>Operator</td>
<td>> Two (2) Calendar Years</td>
<td>> Half (0.5) Calendar Year</td>
</tr>
<tr>
<td>This type of tanker</td>
<td>> Six (6) Years (Sea Time)</td>
<td>N/A</td>
</tr>
<tr>
<td>All types of tanker</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

SIRE ONLINE: Crew Matrix

The Interactive Online Crew Matrix on the OCIMF SIRE website **MUST** be kept updated at all times by the vessel operator. It is **Strongly Preferred** that the crew matrix is updated and validated at intervals of not more than two months.

It is **Strongly Preferred** that the years in crew matrix are recorded using a single decimal place in order to facilitate accurate assessments.
SECTION D NAVIGATION

In addition to statutory requirements, each vessel MUST be equipped with at least the following equipment, which MUST be maintained in good working order and condition. It is recognized that some governing flag states may require ADDITIONAL equipment to that required in this section. Flag states may also require certain items of equipment to meet local operating standards or ‘Type Approval’. Each vessel MUST comply with flag state equipment requirements.

D.1 Vessels MUST have a means to provide a warning if the vessel deviates from her intended course; e.g. Global Positioning System (GPS) and ECDIS (if installed on-board) cross track error, autopilot alarm etc. An independent magnetic off course alarm is Strongly Preferred. [VIQ 4.10.51]

D.2 Vessels MUST, irrespective of Gross Tonnage, be provided with a Simplified Voyage Data Recorder (S-VDR) system. Voyage Data Recorder (VDR) systems MUST be of approved type and capable of storing navigational data, bridge audio, etc. so that the data stored can be retrieved and analysed. The vessel MUST have documented procedures for downloading data from VDR post incident or operational anomaly.

It is Strongly Preferred that VDR data is used for evaluation of navigation practices and compliance with the vessel operator’s procedures. [VIQ 4.10.48]

D.3 Vessels MUST be fitted with a wind speed and direction indicator in the wheelhouse. [VPQ 4.1.1]

D.4 Vessels above 100k DWT MUST be fitted with a Rate of Turn (RoT) indicator.

D.5 The vessel MUST be fitted with a gyro compass. It is Strongly Preferred that vessels have two gyro compasses, or one gyro compass and one transmitting magnetic compass. [VIQ 4.10.41]

D.6 The vessel MUST have means of taking visual compass bearings.

D.7 Radar:

Vessels under 3k DWT: MUST have at least one radar fitted with a true north feature.

Vessels over 3k DWT MUST have at least two radars, at least one of which has a true north feature and each being capable of being operated independently.

It is also Strongly Preferred that 3cm and 10cm (X and S band) capability is provided via the combined use of two radars that can be inter-switched. [VPQ 4.1.4]

D.8 One radar MUST be fitted with electronic tracking and plotting facilities unless a standalone Automatic Radar Plotting Aid (ARPA) is fitted. [VPQ4.1.7]

D.9 Vessel own speed input to an ARPA MUST be speed through the water.
D.10 The vessel **MUST** be fitted with a depth finder. The depth finder is **Strongly Preferred** to have the capability of recording and setting of the alarm set point.

[VQ 4.10.17] [VPQ CH. 4.1.1]

D.11 The vessel **MUST** be fitted with rudder angle indicators, azipod angle indicators (if applicable), speed log indicators, and propeller RPM or controllable pitch propeller pitch setting indicators on the bridge/wheelhouse.

[VQ 4.10.19] [VPQ CH. 4.13.1]

D.12 It is **Strongly Preferred** that vessels are fitted with bridge wing repeaters for rudder angle, speed log, and propeller RPM or controllable pitch propeller pitch settings.

[VPQ 4.1.9 & 4.1.10]

D.13 The vessel **MUST** be fitted with a course recorder.

[VPQ 4.1.1]

D.14 The vessel **MUST** be fitted with GPS.

[VPQ 4.1.1]

D.15 Real-Time (Live) Navigational Assessments by the Master **MUST** be conducted at least every three months, which **MUST** include as a minimum the following elements: evaluation of compliance with navigational procedures, compliance with Collision Regulations (COLREGS), bridge teamwork, Pilot/Master interface, skill sets of officers, situational awareness, emergency response (e.g. steering loss etc.) and bridge team communications. Observations identified **MUST** feed into the operator’s close out and verification process.

D.16 The vessels **MUST** be subjected to a minimum of one annual live navigational audit conducted on passage by a suitably qualified and experienced person based ashore. Competencies listed in paragraph D.15 **MUST** be assessed as a minimum and gaps identified **MUST** be verified as closed during subsequent audits. It is **Strongly Preferred** that navigational auditors have appropriate Electronic Chart Display and Information System (ECDIS) and Electronic Chart System (ECS) training specific to the equipment on-board.

D.17 Vessels **MUST** implement procedures and controls for the effective use, setting, non-muting and adjustments of the anti-collision and navigational safety alarms on the - ECDIS, ECS, Radar, GPS, echo sounder, steering gear and other bridge equipment. Authority levels for adjusting or altering alarm set points **MUST** be part of vessel operator’s Safety Management System.

D.18 The Bridge Navigational Watch Alarm System (BNWAS) reset alarm **MUST** be fitted in the wheelhouse and the NOT in the chart room.

D.19 Vessels **MUST** be fitted with bridge wing gyro repeaters for taking bearings.

D.20 It is **Strongly Preferred** that vessels over 160k DWT, are fitted with a dual axis Doppler sonar speed log.

D.21 Manuals covering navigation and bridge procedures **MUST** be maintained on-board and vessels **MUST** be navigated in a manner that ensures compliance with these procedures.

To avoid errors by one individual during critical operational conditions (e.g. pilotage waters, heavy traffic, restricted visibility), these procedures **MUST** include appropriate bridge manning for all situations when the vessel is underway and at anchor.
The following publications MUST be maintained on-board: flag state or national coastguard agency guidance notes pertaining to the safety of navigation, e.g. U.K. Maritime and Coastguard Agency Guidance Notes, Merchant and Marine Notices.

D.22 Vessels MUST maintain an up-to-date record of events in sufficient detail to restore a complete record of the voyage in an appropriate Deck Log Book.

D.23 There MUST be an established system to ensure that the vessels are provided with all up to date and latest editions of nautical publications and charts (paper or electronic) for the intended route. An effective system MUST be in place to maintain these publications and charts (paper and electronic) and keep them up to date.

D.24 Vessels MUST receive regular Notice to Mariners updates appropriate to their trading areas. The vessel MUST have updated and corrected and the most recent edition charts (paper and electronic) of a suitable scale for the intended trade.

D.25 There MUST be a fully documented passage plan, approved by the Master, covering all legs of the voyage, both at sea and in port, including when a pilot is aboard. Special attention should be given to the in-port passage plan, the interface of the pilot with the Bridge Management Team, and in-port issues such as the effect of squat on under-keel clearance. As a minimum the plan should include the following elements:

1. **Appraisal:** A review of all relevant information pertaining to the voyage leg should be carried out; all potential hazards and scenarios as appropriate should be risk assessed.

2. **Planning:** A detailed written plan should be prepared, with items such as danger areas, tidal data, waypoints, etc. highlighted on the voyage charts (paper and/or electronic).

3. **Execution:** A process must exist to ensure that the bridge team reviews the plan and that controls are in place to ensure it is safely executed.

4. **Monitoring:** The bridge team should use all available means to monitor the passage including the actions of the pilot, and review against the plan.

The passage plan MUST address all the risk and hazards associated with the voyage. When calling at non-routine new ports or navigational routes the passage plan MUST be reviewed by shore management.

D.26 Vessels MUST post, on the bridge alongside other manoeuvring data, the results of a ZIG-ZAG test as per IMO MSC/Circ 1053 1.3.2.

D.27 Vessels MUST be able to demonstrate that two independent means of obtaining navigational data are employed to verify vessel position.

D.28 Vessels MUST maintain a record of deviations for magnetic compasses and a record of error for gyrocompasses to enable corrections of bearings/courses to ‘true’ readings.

D.29 The operation of all navigation equipment and steering gear MUST be verified prior to each port entry and departure. The main propulsion system MUST be tested ahead and astern.

D.30 Comprehensive under-keel clearance (UKC) and air draft calculation(s) considering all significant allowances MUST be documented for the controlling depth(s) on passage. The calculation(s) MUST be relevant for tidal effects and speed of transit over the controlling depth(s).

D.31 Vessels at anchor MUST have a licensed officer on the bridge to maintain an effective anchor watch, and an appropriately qualified engineering officer in the engine room if the vessel is not operating Unattended Machinery Spaces (UMS), or available at all times during the period at anchor if the vessel is operating UMS.
SECTION E SAFETY AND SECURITY MANAGEMENT

E.1 Appropriate Personal Protective Equipment (PPE) MUST be provided for all anticipated operations. Procedures MUST be in place for the routine inspection and replacement of PPE.

The vessel operators MUST ensure that all crew members working in hazardous areas use personal protective equipment (PPE) appropriate to the operations being conducted and the risk involved.

E.2 Vessels MUST have means of embarkation and disembarkation in port, such as gangways and accommodation ladders.

E.3 Vessels MUST operate a documented Permit to Work (PTW) system. The PTW system MUST have specific procedures for (but not limited to) any electrical work, hot work, enclosed space entry, working over the side, working aloft or at height, and lock out/tag out procedures.

E.4 It is Strongly Preferred that operator has a ‘Stop the Job’ policy or statement. The policy or statement should develop and encourage a ‘Stop the Job’ culture if anyone feels unsafe or uncertain about any aspect of a task or operation.

E.5 Vessels MUST carry Emergency Procedures that cover, as a minimum, action to be taken in the event of a collision, grounding, pollution, fire and explosion, and also gas releases from gas ships and toxic vapor releases from chemical carriers.

E.6 For double hull vessels, it is Strongly Preferred that vessels are fitted with fixed gas detection system with recorders to sample for flammable atmospheres in all ballast tanks, cofferdams, or other such spaces within the hazardous zones of the vessel where flammable vapor can accumulate.

E.7 In addition to statutory requirements for double hull vessels, vessels MUST have on-board a documented system or procedure to sample for flammable atmospheres at frequent intervals in all ballast tanks, cofferdams, or other such spaces within the hazardous zones of the vessel where flammable vapor can accumulate. The frequency of testing will be dependent on the voyage length, vessel condition, type of cargo etc., but MUST be clearly stated within the vessel Safety Management System.

If a fixed system where the recorder is not fitted, the procedure MUST include sampling with portable equipment. Records of monitoring of these spaces MUST be maintained.

E.8 Equipment no longer active (e.g., obsolete or having been replaced) MUST be clearly and permanently marked and isolated, or removed if it presents a hazard or could adversely affect the safe operation of the vessel. A system of ‘DO NOT OPERATE’ and ‘WITHDRAWN EQUIPMENT’ tagging is to be in place.

E.9 A vessel having Carbon Dioxide (CO2) as a fixed firefighting extinguishing system MUST have two separate releasing controls.

E.10 While in port, a vessel MUST maintain sufficient personnel on-board to handle emergency and security situations. The vessel operator MUST include guidelines within the Safety Management System to ensure compliance.

[VIQ 5.25] [VIQ 3.1] [VPQ CH. 3.1]
E.11 Vessels which carry or may carry cargoes containing concentrations of Hydrogen Sulfide (H₂S) **MUST** have on-board dedicated and certified personal devices for measuring H₂S, sufficient for at least every crew member working on exposed deck or area.

[VIQ 5.31]

Where the vessel is handling bunkers likely to contain H₂S then the operator **MUST** have procedures clearly identifying the additional precautions and equipment required.

E.12 Vessels **MUST** carry a minimum two of each of the following individual or multi-portable gas detection equipment:

1. Explosimeters (% volume hydrocarbon and LEL analyser);
2. Oxygen Analyzers;
3. Toxic gas detectors or analyzers suitable for the range of products being carried;
4. On vessels operating with Inert Gas Systems (IGS), instruments capable of measuring hydrocarbon content in an oxygen deficient atmosphere **MUST** be provided.

It is **Strongly Preferred** that personal multiple gas detecting alarm units are used by each person working in a potentially hazardous area (as a minimum on deck during cargo, tank cleaning or bunkering operations, or entry into tanks, enclosed space or pump room etc.)

[VIQ 5.27]

E.13 Toxic gas detectors for measuring H₂S **MUST** be certified specifically for use in air or in an inert gas atmosphere.

E.14 Vessels **MUST** have on-board records of tests to show that all gas detection equipment (fixed and portable) is routinely maintained and calibrated.

[VIQ 5.27]

E.15 Officers on-board **MUST** be trained in and familiar with the use and calibration of portable oxygen and hydrocarbon Analyzers.

Appropriate span and calibration gas maintenance kits and batteries (for portable gas detectors) to enable performance checks of the equipment **MUST** be carried.

E.16 Vessels **MUST** have an automatic system of fire detection in the accommodation, wheelhouse, Cargo Control Room (CCR), laundry, drying room, fire control station, pantry and galley areas. It is **Strongly Preferred** that the fire detection system covers all cabins, in addition to public rooms. The auto fire detector **MUST** be connected to the ship main fire alarm system.

E.17 Where the vessel has a CCR, it is **Strongly Preferred** that the CCR is equipped with an anemometer display and monitoring repeater with the capability to record (paper or digital) wind speed and direction. Dynamic Positioning (DP) vessels are **Strongly Preferred** to have additional anemometer displays on the bridge and in the engine control room designed to be capable of setting a minimum of two desired wind speed alarm limits with associated audible and visual alarms in the CCR and on deck if the set limits are exceeded.

E.18 A vessel **MUST** ensure that sufficient time prior to departure is allocated to all officers, ratings, and contractors joining the vessel to familiarize themselves with, but not limited to:
1. Personal survival techniques, medical care, emergency fire and safety equipment as delineated in Chapter VI, Section A-VI/1, of Standards of Training, Certification, and Watchkeeping for Seafarers (STCW 2010).

2. The ship's emergency firefighting and lifesaving equipment.

3. Equipment which they may use or operate in safely carrying out their duties.

4. Any watch keeping, safety, environmental protection and emergency procedures or arrangements that they need to know to be able to carry out their assigned duties properly.

5. Their duties and responsibilities under the ship's Vessel Response Plan (VRP), Shipboard Oil Pollution Emergency Plans (SOPEP) and Ship Security Plan (SSP) as applicable.

6. The vessel operator’s drug and alcohol policy.

E.19 Every vessel MUST have a Fire Pre-Plan to be used as a tool by emergency response personnel to access a ship’s spaces in preparation for firefighting. The plan should be prepared for every space covering the entire ship and each space should be examined for:

1. Space location;
2. Type of fire/fuel;
3. Boundaries;
4. Electrical power sources;
5. Ventilation;
6. Hazards contained within the space;
7. Fire protection;
8. Plan of attack; and
9. Date the fire pre-plan was prepared. Such plans should be checked and approved by the ship management team.

E.20 All portable ladders MUST have a unique identifying number clearly marked on the ladder. The company MUST have in place a procedure for regular inspection.

E.21 All derricks, cranes and chain blocks MUST be clearly marked with their Safe Working Load (SWL), and where appropriate, the operating angle and identifying reference number.

E.22 All lifting slings, strops and wires MUST have mechanical spliced eyes or manufactured webbed eye as applicable. All lifting slings, strops and wires MUST be marked with the SWL with a unique identification number.

E.23 Portable lifting devices such as chain blocks, strops, slings, and shackles etc. MUST be supplied with original test certificates. These MUST be subjected to a regular periodical inspection and MUST be inspected prior to each use.
Criteria E.24 to E.30 apply to vessels transiting Piracy infested waters

E.24 Vessels MUST at all time, whether in port or at sea, maintain adequate security measures.

When transiting through piracy-infested areas, vessels MUST perform a region-specific risk assessment, use all available support, and utilize region-specific Best Management Practices (BMP) to enhance security and safety on-board.

In addition to performing a risk assessment, the Vessels MUST also have a vessel-specific Hardening Plan which includes as a minimum detail of hardening arrangements that prevent access to the accommodation block, bridge, engine room and funnel casing.

Vessels transiting these piracy infested waters MUST implement their Hardening Plan and all preventative and mitigating measures identified within their risk assessment.

E.25 Vessels MUST participate in all voluntary reporting schemes applicable to its voyage routing. These may include but are not limited to: Maritime Security Centre Horn of Africa (MSC-HOA); United Kingdom Maritime Trade Operations (UKMTO); Marine Domain Awareness for Trade – Gulf of Guinea (MDAT-GoG); Information Fusion Centre (IFC) (Voluntary Community Report); and the Mediterranean Voluntary Reporting Scheme.

E.26 Vessels MUST have copies of the Admiralty Maritime Security Planning charts (Q Series, paper or electronic) relevant to its planned passage on-board.

E.27 Vessels transiting through piracy-infested areas MUST have a designated safe muster point so that in the event of a suspicious approach, members of the crew not required on the bridge or the engine control room can muster in a short-term safe haven location with nominal ballistic protection should the vessel be fired on with small arms.

E.28 Vessels MUST be provided with high-intensity searchlights available on the bridge.

E.29 It is Strongly Preferred that vessels are equipped with a citadel. Vessels with a citadel MUST have an independent means of communication with the vessel operator’s Security Officer.

E.30 It is Strongly Preferred that vessels are fitted with an independent tracking device so that its position and speed can be monitored by the vessel operator’s Security Officer. It is Strongly Preferred that this tracking device has an independent transmitter from the Global Maritime Distress and Safety System (GMDSS) equipment and a concealed antenna.
SECTION F POLLUTION PREVENTION

F.1 The vessel operator MUST provide IMT with office and after-hours telephone numbers and details of their shore emergency response organization in order to facilitate operator/charterer communications in the event of a vessel casualty or escape of cargo. This information should be communicated to MSOwner@exxonmobil.com and kept updated at all times.

F.2 Cargo transfer systems MUST be hydrostatically tested annually to maximum allowable working pressure (MAWP). Vessels MUST have on-board records verifying annual pressure testing of the cargo system. Records of individual cargo valves maintenance and tests MUST be kept on-board and available.

For LNG/LPG and Chemical Gas carriers refer to Section S of this document.

[VIQ 8.21]

F.3 Bunker transfer systems MUST be hydrostatically tested annually to the designed working pressure. The vessel MUST have on-board records verifying annual pressure testing of the bunker system.

[VIQ 6.21] [VPQ 6.1.14]

F.4 If the vessel is fitted with a dedicated facility or line to supply water ballast to cargo tanks from the segregated ballast system, there MUST be at least two-valve segregation or positive block (blind) between the segregated ballast system and the cargo tanks, and at least one of the valves MUST be fitted with a non-return device.

F.5 Vessels MUST be fitted with a continuous deck edge fishplate that encloses the main deck area, from bow to stern, such that escape of cargo or bunker oil tank contents will be contained.

F.6 It is Strongly Preferred on ships fitted with stern anchors that the poop deck is fully protected with an appropriate fish plate or gutter bar and should have a means to prevent the escape of liquid through the hawsepipe. For vessels with continuous decks, a transverse fishplate MUST be fitted aft of the last cargo tank to prevent the flow of cargo around the poop or accommodation deck area. A means of draining or removing oil from the enclosed deck containment area MUST be provided.

[VPQ 6.1.1]

F.7 All bunker manifolds, cargo manifolds, slop manifolds and bunker tank vents including service and storage oil tank vents, deck hydraulic machinery MUST have spill containment arrangements which are of permanent construction. The spill containment arrangement and its drain plugs (if provided) MUST be regularly tested for effectiveness.

[VIQ 6.20] [VPQ 6.1.2]

F.8 All flanged connections requiring bolts MUST be fully bolted at all times.

F.9 All open-ended cargo, bunker or ballast pipe work and unused manifolds including pipeline drains and stub pieces MUST be blanked and fully bolted (or capped in the case of small diameter lines). Any blank flange fitted on the vessel MUST be of sufficient strength for the certified pipeline design working pressure.

Bunker and cargo manifold drains MUST lead to a spill containment arrangement of permanent construction.

[VIQ 6.22]
F.10 Blank flanges **MUST** be fitted on all cargo related overboard discharge pipelines, unless impracticable, in which case double block valves are acceptable if they are fitted with a system to monitor the integrity of the space between the valves.

[VIQ 6.17] [VPQ 6.1.10]

F.11 Scuppers **MUST** be effectively plugged and physically verified prior to commencement and during all cargo, ballast and bunker handling operations, and at all other times when in port, except when clearing rainwater. The scupper plugs **MUST** be tested for its tightness at frequent intervals.

Where the ship is fitted with a scupper drain system this **MUST** be checked prior to arrival in port to ensure that the lines are clear and the valves operate correctly. Scupper drain system valves **MUST** be clearly identified and **MUST** be kept closed whilst the ship is in port. Mechanical scupper plugs are **Strongly Preferred**. Wooden plugs with cement are acceptable provided they are properly maintained.

Scuppers on gas carriers **MUST** be effectively plugged during bunkering and cargo operation when carrying any type of pollutants (MARPOL Annex 1 and 2 in its form or if mixed with water).

F.12 Pollution control equipment **MUST** be available in accordance with the Oil Pollution Preparedness, Response, and Coordination (OPRC) Convention 1990. As a minimum, the following equipment **MUST** be available:

1. Sorbents;
2. Non-sparking hand scoops, shovels, and buckets;
3. Containers suitable for holding recovered waste;
4. Emulsifiers for deck cleaning;
5. Protective clothing; and
6. Two non-sparking portable pumps of sufficient capacity with hoses in good operating condition. Unless otherwise stated in the manufacturers’ instructions, all portable pumps **MUST** be earthed when in use. For vessels fitted with fixed dump valves, portable pumps are not required.

[VPQ. 6.1.5]

F.13 Vessels **MUST** be fitted with at least two valves on each cargo sea chest. A system to monitor the integrity of the space between the valves for product leakage and sea valve integrity **MUST** be fitted, unless the sea chest is isolated from the cargo system by a spool piece or blank. (OCIMF publication ‘Prevention of Oil Spillages through Cargo Pump Room Sea Valves’ may be used as a guide).

[VPQ. 6.1.8 & 6.1.6]

F.14 Where installed, the cargo sea chest valves **MUST** be kept closed and sealed at all times when not in use. All portable spool pieces between the cargo pumps and sea valves, if fitted, **MUST** be removed and the pipeline ends blanked, during normal cargo operations when the connections to the sea valves are not required.

F.15 Operators **MUST** have in place an Environmental Policy covering pollution from the following sources, as appropriate:

MARINE ENVIRONMENTAL, SAFETY AND QUALITY ASSURANCE CRITERIA
FOR INTERNATIONAL OCEAN/SEAGOING TANKER VESSELS IN EXXONMOBIL AFFILIATE SERVICE
2017 EDITION
1. Oil, associated products, and chemicals, Liquid Natural Gas (LNG) and Liquid Petroleum Gas (LPG), sludge, bilge water, tank cleaning residue;

2. Noxious liquid substances;

3. Sewage;

4. Dangerous goods;

5. Garbage;

6. Ballast water (including the transfer of micro-organisms);

7. Cargo vapor and engine exhaust emissions;

8. Refrigerants, halons and chlorofluorocarbons (CFCs);

9. Noise; and

10. Anti-fouling paints.

Guidelines issued by the International Chamber of Shipping (ICS) ‘Shipping and the Environment – a Code of Practice’ should be used as a reference.

F.16 Vessels provided with temporary connection arrangements between cargo and ballast or cargo and Inert Gas Systems (IGS) or ballast and IGS MUST be equipped with dedicated portable spool pieces or similar arrangements, which MUST be disassembled and kept stowed in a conspicuous position when not in use.

F.17 The Oily Water Separator (OWS) and Oil Discharge Monitoring Equipment (ODME) MUST be regularly tested and verified fully operational, prior to each use.

The OWS and ODME MUST be calibrated by manufacturers or persons authorized by the manufacturer annually, or alternatively, the measuring unit sensor must be renewed.

The OWS and ODME piping systems MUST be tamper proof and in accordance with MARPOL regulations and the approved system drawings.

F.18 The switch for the electric power supply for the Engine Room OWS MUST be located on the Bridge.

F.19 The vessel operator MUST have in place a procedure for inspection, testing, and replacement of all flexible hydraulic hoses on deck. All flexible hydraulic hoses exposed on deck MUST be replaced at least every 5 years.

F.20 It is Strongly Preferred that vessels are constructed with double hull (double side shell and bottom) bunker tanks, lube oil tanks and other tanks and spaces containing any type of pollutants (MARPOL Annex 1 & 2 in its form or if mixed with water).

F.21 It is Strongly Preferred that ballast tanks have protective coatings and that vessels comply with performance standards referred to in (IMO) Resolution MSC 215 (82).

F.22 It is Strongly Preferred that vessels are provided with adequate means for quick sampling and visual inspection of the segregated ballast water for any oil contamination prior to discharge.

[VIQ 6.31]
F.23 Vessels fitted with ballast water treatment systems that alters the chemistry of the ballast water in the tanks versus ambient seawater (namely Active Substance Systems as defined by IMO) **MUST** have on file a statement from the ballast tank coating supplier confirming compatibility of the ballast tank coating type with said system.

F.24 It is **Strongly Preferred** that cargo and ballast overboard pipelines do NOT pass through bunker tanks. Vessels with cargo and ballast overboard pipelines passing through bunker tanks **MUST** have the overboard valves installed outboard of the bunker tank or if the latter option is not possible then as adjacent to the vessel side shell as is practical.

F.25 Vessels **MUST** fully comply with the MARPOL Annex VI provisions for the control of sulphur emissions whilst trading in special SOx Emission Control Areas (SECAs) or Emission Control Areas (ECAs). When chartered for worldwide trade, the vessel **MUST** be capable of meeting relevant latest local and national marine fuel sulphur content and emission regulations, for example EU Directive 2012/33/EU.
SECTION G STRUCTURAL CONDITION

G.1 Vessel operators of all types of tankers over 15 years of age MUST provide their most recent Special Survey documentation for review by IMT.

For Oil and Chemical vessels with Enhanced Survey Program (ESP) notation IMT requires, as a minimum, copies of the following documents for review. Additional documentation may be requested.

1. Survey Planning document for the last Special Survey;
2. Executive Hull Summary/Condition Evaluation Report (EHS/CER) for the last Special Survey;
3. All survey reports listed in the EHS/CER;
4. All Thickness Measurement reports listed in the EHS/CER;
5. All Hull Survey reports issued since the last Special Survey;
6. All Thickness Measurement reports issued since the last Special Survey;
7. Latest Condition Assessment Program (CAP) certificate and report for the Hull (for vessels over 5,000 tonnes DWT);
8. Thickness Measurement report employed for the Hull CAP report (for vessels over 5,000 tonnes DWT);
9. CAP Fatigue Assessment (for vessels over 5,000 tonnes DWT);
10. Latest CAP certificate and report for Machinery and Cargo systems;
11. Latest cargo tank, ballast tank, cofferdam and void space coating condition reports; and
12. Latest Class Survey Status report, including the section detailing Conditions of Class and Memoranda.

Gas and bitumen/asphalt vessels which have not been assigned with ESP notation and are not subject to an Enhanced Special Survey, are still required to undertake a Special Survey. IMT requires, as a minimum, copies of the following documentation for review:

1. All survey reports related to the last Special Survey;
2. All Hull Survey reports issued since the last Special Survey;
3. All Thickness Measurement reports relating to the last Special Survey;
4. All Thickness Measurement reports issued since the last Special Survey;
5. Latest CAP certificate and Hull CAP report (for vessels over 5,000 tonnes DWT);
6. Thickness Measurement report employed for the Hull CAP report (for vessels over 5,000 tonnes DWT);
7. CAP Fatigue Assessment (for vessels over 5,000 tonnes DWT);
8. Latest CAP certificate and report for Machinery and Cargo Systems;
9. Latest ballast tank, cofferdam and void space coating condition reports; and
10. The latest Class Survey Status report, including the section detailing Conditions of Class and Memoranda.

Additionally, for all type of vessels that have undergone major conversion such as from single hull to double hull (DH), Oil Bulk Ore (OBO) to DH tanker etc., the vessel technical operator **MUST** provide the following additional document(s) for IMT review:

1. A Certificate/Attestation from Class confirming that the vessel has been converted in accordance with the approved drawings and the rules and regulations of the society;
2. Management of Change documentation for the conversion;
3. Details of supervision of the conversion while in the shipyard; and
4. Details of inspection on completion of the conversion and relevant trials conducted to verify the integrity of the conversion.

It is essential for the submitted documentation to be complete so that reviews can be carried out expeditiously to determine if the vessel is suitable for the ExxonMobil Affiliate service.

All communication with IMT related to this process should be directed by email to MSess@exxonmobil.com.

G.2 Vessels over 15 years of age and more than 5,000 tonnes DWT **MUST** provide a Hull CAP Certificate with Grade 1 or 2 rating issued by a Classification Society which is a member of the International Association of Classification Societies (IACS).

All types of tankers over 15 years of age **MUST** provide CAP Certificate for Machinery and Cargo Systems with a Grade 1 or 2 rating, issued by a Classification Society which is a member of IACS.

The CAP certificate **MUST** be renewed every 5 years. If the vessel is older than 20 years, the CAP Certificate **MUST** be renewed every 30 months.

(G.3) Aluminium anodes **MUST NOT** be used in CARGO tanks. If used in BALLAST tanks, they **MUST** meet the following criteria:

1. Anodes **MUST NOT** be placed higher than 1.8m or higher than a position that may cause an impact-energy greater than 20kgm in the event of a fall;
2. Anodes **MUST** be shielded from objects falling from directly overhead (specially designed box shields); and
3. Anode alloys **MUST** contain no more than 0.02% magnesium or 0.1% silicone or **MUST** meet US Coast Guard Requirements if applicable.

(Code of Federal Regulations - 35.01-25(b) (4). [VPQ 7.1.3])

G.4 For vessels engaged in the carriage of chemicals or clean products, tanks **MUST** either be stainless steel or be fully coated with a coating suitable for the range of products intended to be carried. A record of cargo tank coating condition **MUST** be maintained on-board showing the status of the coating condition in each tank. On vessels that are used for carrying aviation grade kerosene, the cargo tanks, including heating coils, heat exchanger, cargo pumps, and cargo lines **MUST** be free of galvanized steel, copper, zinc, cadmium, and their alloys.

G.5 A Vessel Special Survey or Enhanced Special Survey should not be extended and **MUST** be conducted within the Classification Society issued survey cycle for vessel age and type.

MARINE ENVIRONMENTAL, SAFETY AND QUALITY ASSURANCE CRITERIA

FOR INTERNATIONAL OCEAN/SEAGOING TANKER VESSELS IN EXXONMOBIL AFFILIATE SERVICE

2017 EDITION
G.6 All steel diminution that falls within the Classification Society definition of ‘substantial corrosion’ or ‘renewal (minimum allowable thickness)’ MUST be repaired to the satisfaction of the attending Classification Society surveyor.

Doubler plates MUST NOT be used as a permanent method of repair in way of shell plating, deck plating, cargo/slop tanks and fuel oil tanks.
SECTION H CARGO AND BALLAST SYSTEMS

H.1 The vessel **MUST** have on-board cargo operation and handling procedures in addition to documentation showing maximum loading rates, venting capacities and the maximum permissible pressure and vacuum each tank can withstand.

 [VIQ 8.1]

H.2 A detailed and documented cargo-handling plan written in the working language of the vessel **MUST** be prepared and available for every cargo or ballast operation undertaken. This cargo plan **MUST** be read and signed by all Deck Officers and the Master.

 [VIQ 8.16]

H.3 Material Safety Data Sheets (MSDS) for all products being handled **MUST** be displayed. Where applicable, a copy of the USCG Data Guide should be on-board.

H.4 Cargo pumps **MUST** have emergency stops located:

1. in the Cargo Control Room (CCR);
2. at manifold(s); and
3. just outside the pump room entrance and pump room bottom (if the vessel is fitted with a cargo pump room).

The Remote stops **MUST** be tested within 24 hours of expected cargo operations.

 [VIQ; 8.22][VPQ. 9.6.3]

H.5 All main cargo and ballast pumps located in a pump room, their bearings and casings **MUST** be fitted with high-temperature alarms and trips. It is **Strongly Preferred** that vacuum pumps as part of an Automatic Unloading System (AUS) are fitted with high-temperature alarms and trips.

All main cargo & ballast pump drive shaft bulkhead bearings and glands located in the pump room **MUST** be fitted with high-temperature alarms monitoring system.

It is **Strongly Preferred** that rotary positive displacement pumps are fitted with alarms and trips for high flash point cargoes, and **MUST** be so fitted for cargoes with flash points below 60°C.

H.6 Vessels **MUST** have appropriate cargo and ballast logbook(s) on-board containing an up-to-date record of events.

H.7 Vessels free of inherent intact stability problems are **Strongly Preferred**. Where the vessel is not free from inherent intact stability problems, the operator **MUST** determine all conditions of cargo and ballast operations where IMO stability criteria are not satisfied. Vessels that are not free from inherent intact stability problems or have large width cargo tanks, ‘U’ section ballast tanks, or double bottom tanks without watertight centreline bulkheads **MUST** have operating instructions that:

1. Indicate the number of tanks which may be slack and still satisfy IMO stability criteria under all possible conditions of liquid (cargo and/or ballast) transfer;
2. Are understandable to the officer-in-charge of transfer operations;
3. Require no extensive mathematical calculations by the officer-in-charge;
4. Illustrate corrective actions to be taken by the officer-in-charge in case of departure from planned values, and in case of emergency situations, such as negative stability causing an angle of loll; and

5. Are prominently displayed in the approved trim and stability booklet, at the Cargo/ballast transfer control station, and in any computer software by which stability calculations are performed.

[H.8] A Class-approved cargo computer, or equivalent, **MUST** be provided to enable stability calculations prior to and at any stage of the cargo operation and to calculate hull stresses and **MUST** provide a warning (alert) of unstable or potentially unstable conditions. The loading computer **MUST** be regularly tested against Class-approved data to ensure operational accuracy; records of this testing are to be maintained.

[H.9] Vessels **MUST** be fitted with bilge alarms in pump rooms, including ballast pump rooms, bow and stern thruster rooms, steering gear room, fore peak store and emergency fire pump room.

[H.10] Vessels carrying low flash point cargoes **MUST** be fitted with a fixed system capable of continuously monitoring for a potentially flammable atmosphere in cargo pump rooms.

[H.11] The flammable gas detection system in cargo pump rooms **MUST** be fitted with an alarm to indicate the presence of significant concentrations of flammable vapor. It is **Strongly Preferred** that sensors and sampling points for monitoring flammable atmospheres are distributed throughout pump rooms. Ref: OCIMF Information Paper on Pumproom Safety (Reprinted September 1995).

[H.12] Vessels **MUST** have pressure gauges with valves or cocks fitted, port and starboard, at each manifold connection outboard of cargo manifold valves. This requirement may be waived on application and justification for chemical carriers and multi-product carriers which have an excessive number of manifolds, and where acceptable alternate arrangements are in place.

[H.13] It is **Strongly Preferred** that vessels are fitted with a Cargo Control Room (CCR) with centralized cargo pump control, valve operation and remote tank level gauges and alarms.

[H.14] Cargo tank venting **MUST** be through approved systems that expel vapor clear of the tank deck area in accordance with the International Safety Guide for Oil Tankers and Terminals (ISGOTT).

Where independent full flow P/V valves are installed, they **MUST** be so fitted that they cannot be isolated from the tanks they protect and **MUST** be capable of flowing sufficient volume of gas to prevent damage at the tank’s maximum loading/discharge rates.

[H.15] Vessels **MUST** be able to undertake cargo operations under controlled venting, closed gauging and closed sampling.
A vapor recovery system is required at certain terminals. If fitted on-board, it **MUST** be Class approved. Manifolds **MUST** comply with the OCIMF ‘Recommendations for Oil Tanker Manifolds and Associated Equipment’ and vessel personnel conducting cargo operations **MUST** be familiar with the safety implications associated with the use of vapor recovery systems.

[VPQ CH.9.9.2 & 9.11.1]

H.17 Tank level measuring devices **MUST** be available for all cargo tanks, slop tanks and bunker tanks (including storage, service and settling tanks).

Automatic (fixed) tank gauges are **Strongly Preferred**. Where automatic tank gauges are fitted, these **MUST** have remote readings in the CCR.

It is **Strongly Preferred** that tank level measuring devices or automatic (fixed) tank gauges were fitted for all cargo, slop and bunker tanks (including storage, service and settling tanks) are calibrated and certified at least every five years by a recognized company.

[VPQ. 9.8.1]

H.18 Irrespective of the automatic tank gauging system, vessels **MUST** be fitted with vapor locks capable of drawing liquid samples, and of measuring ullage, temperature, and interface with portable sonic tapes.

Cargo tank vapor locks **MUST** be independently calibrated and certified so that measurements taken from them can be used with the vessel's original ullage tables.

H.19 Portable sonic measuring tapes **MUST** be provided on-board to gauge each tank being topped off.

Vessel **MUST** have sufficient portable sonic measuring tapes capable of measuring ullage, temperature, and interface in addition to the fixed gauging system for independent monitoring of ullages for tanks being topped off, along with a sufficient number of closed samplers.

Vessels **MUST** annually assign a responsible officer to check the accuracy of all the portable sonic measuring tapes against a recently calibrated tape. At any given time, at least one tape **MUST** be within a year from the last calibration date. Calibration of tapes must be performed in accordance with manufacturer’s recommendations. Certificates of calibration for the portable sonic measuring tapes **MUST** be available on-board.

It is **Strongly Preferred** that calibration frequency for all portable sonic measuring tapes not exceed five years.

H.20 Use of portable measuring equipment, including sonic tapes and sampling devices when loading products in non-inerted tanks **MUST** be in accordance with the precautions to prevent electrostatic ignition recommended in ISGOTT.

Except where tanks are fitted with perforated full depth sounding pipes, portable measuring and sampling devices **MUST NOT** be introduced into non-inerted tanks until 30 minutes after cargo flow to the tank stops. Vessels **MUST** be able to safely top off in full compliance with these requirements.

If sounding pipes are fitted, they **MUST** be perforated, constructed to extend the full depth of the tank, and be effectively bonded. Full depth sounding pipes **MUST** be fitted to the vapor lock if the vessel has no IG system and carries static accumulating cargoes.

H.21 All cargo, ballast and bunker line-up, including a manifold jumper and flexible hose line-up and cargo venting line-up, **MUST** be independently verified by at least two responsible individuals.
H.22 Independent high-level alarms **MUST** be fitted for all cargo tanks, slop tanks, fuel and diesel oil bunker tanks in addition to the high-level alarms incorporated in the fixed/automatic tank gauging system.

The independent high-level alarms **MUST** have separate wires (feeders) back to the CCR. They **MUST** be used during all cargo, slop and bunker transfer operations and suitably located on deck and CCR to alert personnel conducting cargo, slop or bunker operations.

Independent high-level alarms **MUST** be tested prior to cargo, bunker or slop operations, and the tests properly recorded.

[VPQ 9.8.7.3]

H.23 An operational high-level alarms **MUST** be fitted for all fuel and diesel oil service and settling tanks. They **MUST** be used during all bunker transfer operations and suitably located in the engine room to alert personnel conducting bunker transfer. High-level alarms **MUST** be tested at frequent intervals.

H.24 Vessel cargo and bunker manifolds and associated valves, reducers and spool pieces **MUST** be fabricated of steel. Flexible hose connections **MUST** be via bolted steel flanges, unless the connection system is supplied and designed for a specifically designated purpose. Grey cast iron and aluminium are **NOT** permitted. Ductile iron may be used if of appropriate strength, yield strength, and elongation.

H.25 Vessels used for the carriage of more than one grade of cargo **MUST** be capable of maintaining a two valve or equivalent separation between grades at all times during the execution of the voyage, including loading and discharging operations.

Gas carriers **MUST** have a distance piece connection and blind flange arrangement for segregation between grades. If a spool is used it should be of same thickness and material as the cargo pipeline flanges. It is **Strongly Preferred** that such spool pieces are made of SUS 316 material.

[VPQ. 9.5.1]

H.26 Vessels having conventional pump rooms **MUST** be equipped with at least two operational main cargo pumps.

H.27 Vessels **MUST** have on-board documented maintenance procedures and test records that relate to cargo handling equipment, systems, and alarms. Cargo handling equipment, systems, and alarm include but are not limited to the cargo pumps, piping, valves, inert gas system, independent high-level alarms and cargo instrumentation. The vessel **MUST** have defined schedules within their PMS to test these equipment, systems and their alarms and trips.

The vessel **MUST** establish and carry minimum spares for cargo handling equipment, systems, and alarms.

H.28 It is **Strongly Preferred** that vessels are fitted with a device in their CCR capable of monitoring and recording the load and discharge manifold pressure outboard of each port and starboard manifold valve.

H.29 All the cargo equipment such as pressure gauges, vacuum gauges, thermometers etc. **MUST** be checked annually for accuracy by a responsible vessel engineer using a recently calibrated and certified master gauge.

All cargo pressure and vacuum gauges including thermometers **MUST** be calibrated and certified at least every five years by a recognized company.

For gas carriers refer to Section S of this document.
Irrespective of vessel complying with the (IMO) International Convention for the Safety of Life at Sea (SOLAS) primary and secondary venting system, vessels **MUST** have fixed individual cargo tank pressure monitoring equipment fitted with a visual display unit installed in the CCR. The system shall include the manufacturer’s set high and low-pressure alarms as detailed within OCIMF SIRE 6 VIQ CH. 8.33, and additionally a further minimum two adjustable, user-defined, alarm limits which can be set as required. These alarms should provide an audible and visual alarm in the CCR if the set limits are exceeded.

It is **Strongly Preferred** that vessels are fitted with a cargo tank pressure monitor display and alarm unit on the bridge in addition to the display and alarm unit installed in the CCR.

Vessels **MUST** use appropriate design standard manufacturer supplied and certified cargo hoses compatible for the cargo being transferred. As a minimum, hoses on-board **MUST** meet the following specifications:

1. The Maximum Working Pressure (MWP) of the cargo hoses **MUST** be not less than 13.8 bar;
2. For petroleum and chemical vessels:
 - Rubber cargo hoses **MUST** comply with BS EN 1765;
 - Composite cargo hoses **MUST** comply with BS EN 13765;
3. For asphalt/bitumen and molten sulphur vessels: BS EN 13482.

Vessels **MUST** carry cargo hose certificates on-board issued by the manufacturer confirming that the cargo hoses meet the appropriate European Standards (ENs)

All cargo hoses on-board **MUST** be inspected prior to each use to ensure they are free of kinks or any other deterioration or damage. Cargo hose assembly exhibiting deterioration or damage **MUST NOT** be used. For those connections where an external gasket is used, vessels **MUST** use a new gasket for each connection compatible for the cargo being transferred.

All cargo hoses on-board in service **MUST** have a documented inspection and testing at least annually to confirm their suitability for continued use. This should include:

1. A visual check for deterioration/damage;
2. Pressure test to 1.5 times the MWP but not less than 22.5 bar. In addition vacuum test smooth bore rubber cargo hoses to 0.85 bar;
3. Permanent and/or temporary elongations; and
4. Electrical continuity test.

Each cargo hose **MUST** be marked with the test date and rated MWP, and be individually numbered for identification purpose linked to their certificates.

Each cargo hose type on-board **MUST** have retirement age defined in consultation with the cargo hose manufacturer. The cargo hose on-board **MUST** be withdrawn from service at their defined retirement age but not exceeding 6 years for rubber cargo hoses and 4 years for composite cargo hoses.
SECTION J INERT GAS AND CRUDE OIL WASHING SYSTEMS

J.1 An Inert Gas system (IGS), where fitted, **MUST** be used for the carriage of all petroleum cargoes.

It is **Strongly Preferred** that all vessels, irrespective of DWT, are fitted with IGS or Nitrogen System as applicable to cargo type.

J.2 An IGS, Nitrogen System, or Dry Air System where fitted, **MUST** be maintained in full working order and have documented maintenance procedures, including maintenance and test records. Maintenance records **MUST** include scrubber tower, blowers, deck seal, P/V breakers, P/V valves, mast risers, oxygen analyser, pumps, non-return valves, dehumidifiers and driers, chiller unit, fittings and instrumentation containing critical components, and inspection and examination of the inert gas pipe sections for corrosion or leakage.

\[VPQ.9.15\] [VIQ 9.4]

J.3 The IGS **MUST** be operated as per a detailed manual approved by the vessel's classification society. It is **Strongly Preferred** that the IMO publication ‘Inert Gas’ is carried on IGS fitted vessels. A log of inerting and gas freeing operations **MUST** be maintained on-board.

\[VPQ.9.15\]

J.4 IGS or Nitrogen Systems Alarms and trips **MUST** be tested prior to use of the system and tests properly recorded. It is **Strongly Preferred** that IGS or Nitrogen System alarms and trips are tested 24 hours prior to use.

J.5 A calibration check of the oxygen analyser **MUST** be carried out prior to putting IG system into use and records should be maintained. It is **Strongly Preferred** that oxygen analyser is calibrated 24 hours prior to a cargo discharge.

J.6 All vessels fitted with IGS system **MUST** have a complete spare IGS oxygen (O2) analyser unit. It is **Strongly Preferred** that this spare IGS O2 analyser is permanently fitted as an additional IGS O2 analyser to serve as a back-up in case of failure of the main IGS O2 analyser.

J.7 In regard to cargo tank pressure and vacuum protection, all vessels **MUST** comply with the provisions of SOLAS regardless of their build date.

J.8 The IGS deck seal **MUST** be of the ‘Wet’ or ‘Semi-dry’ type. ‘Dry’ deck seals are not acceptable. For vessels delivered after 30th November 2017, ‘Semi-dry’ deck seals relying on venturi or equivalent are not acceptable; new ‘Semi-dry’ deck seals **MUST** be of the water displacement type. For all deck seals, the maintenance procedures (see J.2) **MUST** include frequent inspection for blocking or clogging of piping and internal openings critical to the function of the seal.

Chemical carriers fitted with inert gas systems but no deck seals **MUST** comply with the enhanced requirements for block and bleed systems identified by the OCIMF paper ‘Inert Gas Systems: Block And Bleed Valve Arrangements For Chemical Carriers Carrying Chemicals And Petroleum Products’ (published January 2000).

\[VPQ.9.15.11\]

J.9 The IGS lines **MUST** be inspected and drained at regular intervals, and records maintained.
J.10 The procedure in J.9, **MUST** be carried out immediately in the event of a tank overfill.

Crude oil vessels fitted with a Crude Oil Washing (COW) system **MUST** have clearly established procedures for crude oil washing. A class approved COW manual **MUST** be available on-board.

[VIQ 8.52] [VPQ 9.15.20.1]

J.11 All officers in charge of COW operations **MUST** have knowledge of the on-board COW procedures.

[VIQ 8.54]

J.12 Operators **MUST** establish a COW checklist to be followed by vessel staff when conducting operations. This checklist **MUST** cover pre- and post-operation checks.

[VIQ 8.53]

J.13 Current IMO publication of ‘Crude Oil Washing System **MUST** be available on-board for reference.
SECTION K MOORING

Vessels **MUST** comply with the OCIMF Mooring Equipment Guidelines (MEG).

K.1 The following table lists minimum mooring requirements by vessel size. Some terminals may require additional mooring lines to supplement those listed.

<table>
<thead>
<tr>
<th>VESSEL SIZE DWT</th>
<th>NUMBER OF MOORING Lines/Wires</th>
<th>BREAKING STRENGTH METRIC TONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 2,000</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>2,001 – 3,000</td>
<td>6</td>
<td>25</td>
</tr>
<tr>
<td>3,001 – 4,000</td>
<td>6</td>
<td>27</td>
</tr>
<tr>
<td>4,001 – 5,000</td>
<td>6</td>
<td>29</td>
</tr>
<tr>
<td>5,001 – 15,000</td>
<td>8</td>
<td>31</td>
</tr>
<tr>
<td>15,001 – 20,000</td>
<td>10</td>
<td>39</td>
</tr>
<tr>
<td>20,001 – 45,000</td>
<td>10</td>
<td>47</td>
</tr>
<tr>
<td>45,001 – 75,000</td>
<td>10</td>
<td>53</td>
</tr>
<tr>
<td>75,001 -100,000</td>
<td>12</td>
<td>64</td>
</tr>
<tr>
<td>100,001 – 140,000</td>
<td>12</td>
<td>65</td>
</tr>
<tr>
<td>140,001 – 160,000</td>
<td>12</td>
<td>74</td>
</tr>
<tr>
<td>160,001 – 250,000</td>
<td>12</td>
<td>77</td>
</tr>
<tr>
<td>250,001 – 400,000</td>
<td>16</td>
<td>103</td>
</tr>
</tbody>
</table>

IMPORTANT NOTE

All mooring lines for vessels 45k DWT and above required by the table **MUST** be fitted on self-stowing mooring winch drums (split type is Strongly Preferred) and fitted with brakes having a holding capacity in accordance with the OCIMF MEG.

HIGH-MODULUS SYNTHETIC FIBER ROPES

Mooring lines required by the table may be high-modulus synthetic fibre ropes with equivalent breaking strength. However, if so fitted, the rope manufacturer’s guidance and OCIMF MEG **MUST** be fully complied with.

If fitting high-modulus synthetic fibre ropes in place of wire ropes, Operators **MUST** be aware that some terminals may continue to insist on wire ropes being used.

MOORINGS - GENERAL

K.2 Vessels **MUST NOT** use mooring lines (wire, high-modulus or regular synthetic fibre ropes) of differing elasticity, running in the same direction (i.e. mixed mooring).

K.3 Synthetic mooring tails, if fitted to wire ropes, **MUST** be connected to the wire with Mandel, Boss or Tonsberg shackles. Where tails are fitted to high-modulus synthetic fibre ropes, the connection **MUST** be made in compliance with the recommendations laid down by the manufacturer of the high-modulus synthetic fibre rope.

[VIQ 9.2] [VPQ 10.1.5]

K.4 When used, synthetic mooring tails **MUST** meet the latest OCIMF guidelines.

[VIQ 9.2]
K.5 Mooring wires and synthetic lines MUST be reeled on their drums in the direction which enhances brake holding power.

K.6 All conventional tankers greater than 100,000 DWT other than shuttle tankers with bow loading system MUST be fitted with two bow stoppers.

K.7 Conventional tankers outfitted for mooring at SPMs MUST be fitted with equipment in accordance with OCIMF guidelines. It is Strongly Preferred that the vessel outfitted for mooring at SPMs are NOT fitted with Smit type brackets.

Refer to:

The OCIMF ‘Recommendations for Equipment Employed in the Bow Mooring of Conventional Tankers at Single Point Moorings’ and OCIMF ‘Mooring Equipment Guidelines’

K.8 Vessels intended for Multi Buoy Moorings (MBMs) MUST have closed chocks which MUST be of sufficient number to moor to typical MBM configurations as described in the OCIMF MEG. Vessels intended for specific MBM terminals MUST have sufficient closed chocks to meet the terminal mooring requirements.

K.9 All mooring ropes, wires, winches, tails and shackles MUST be in good condition.

K.10 Operators MUST ensure that winch brake holding capacity at the rendering point is tested annually and that the proper setting is recorded. For example, a tag, stating the proper torque, attached to a screw brake and provision of a torque wrench for proper setting in service. (See OCIMF MEG).

K.11 It is Strongly Preferred that all mooring wires eyes have mechanically spliced eyes. Certificates listing the breaking strength of each wire and rope MUST be kept on-board. Records MUST identify the wires or rope to the winches on which they are deployed.

K.12 Mooring winches, lines, and fittings MUST have documented maintenance procedures and test records. Maintenance MUST include brake and linkage inspection and overhaul, along with winch brake rendering tests.

K.13 Hose lifting equipment MUST be sized so as to adequately handle the anticipated range of equipment.

The following will serve as a guideline:

- Vessels up to 16,000 DWT = 1 to 5 ton SWL
- 16,001 DWT to 25,000 DWT = 10 ton SWL
- 25,001 DWT to 60,000 DWT = 10 ton SWL
- 60,001 DWT to 160,000 DWT = 15 ton SWL
- Above 160,001 DWT = 20 ton SWL

Gas carriers MUST meet the lifting equipment recommendations of the Society of International Gas Tanker and Terminal Operators (SIGTTO) Manifold Recommendations for Liquefied Gas Carriers.

K.14 Vessels intended for All Buoy Berths (ABBs) MUST have closed chocks both forward and aft with sufficient number to moor to typical ABB mooring configurations. Vessels intended for specific ABB terminals MUST have sufficient closed chocks to meet the terminal mooring requirements.
K.15 The operator’s Vessel Safety Management Systems **MUST** identify risks associated with mooring operations and include appropriate safeguards against those identified risks, including ensuring that vessel personnel are well aware of snap-back zones whilst performing mooring operations.

K.16 All anchors and anchoring systems, inclusive of stern anchoring systems, including anchor chain, joining shackles, windlass, stoppers, pawl bar and bitter-end **MUST** be in full operational condition (no permanent or temporary defects or restrictions in operating).

K.17 In line with the OCIMF MEG; separate strong points and chocks specifically for tug escort and pull-back duties **MUST** be fitted on all tankers over 20,000 DWT.

Where ‘Emergency Towing Arrangements’ (ETA) are fitted as required by SOLAS this will meet the above requirements provided they are suitable for this dual purpose, and use should not compromise the deployment or effectiveness of the emergency towing arrangements.
SECTION L COMMUNICATIONS

L.1 Vessels **MUST** be fitted with sufficient portable VHF or UHF intrinsically safe mobile units for use by key personnel involved with shipboard operations. These portable mobile units **MUST** have an adequate selection of channels available to prevent interference between vessels in congested ports. VHF radio telephones, required under SOLAS Reg. 6. 2.1.1, should **NOT** be used for this purpose.

[VIQ 10.14] [VPQ 11.1.11]

L.2 Where the vessel has a Cargo Control Room (CCR) sited in the safe area, a VHF radio telephone **MUST** be fitted.

[VPQ 11.1.9]

L.3 The vessel **MUST** be fitted with satellite communication equipment capable of data and voice communication.

L.4 It is **Strongly Preferred** that the operators have established guidelines and procedures for the use of social media and mobile phones by the ship’s staff during normal operations and in the event of an emergency.
SECTION M ENGINE ROOM AND STEERING GEAR

M.1 Vessels **MUST** be fitted with bilge alarms in the engine room. There **MUST** be a procedure to test bilge alarms weekly and a record maintained accordingly. It is **Strongly Preferred** that the bilge pump on-board the vessel has a long run alarm, and the alarm’s reliability is periodically tested.

[M.1]

M.2 One of the steering systems for the vessel **MUST** operate from the emergency power supply. It is **Strongly Preferred** that all vessels, irrespective of Gross Registered Tonnage (GRT), comply with SOLAS Chapter II-1, Regulation 29, Para.16, and Para.20.

M.3 Vessels greater than 16k DWT **MUST** be fitted with a main and an auxiliary steering system including two independent steering motors and hydraulic pumps.

M.4 Main engine and steering gear **MUST** be tested prior to arrival and departure from port. Emergency steering drills **MUST** be carried out periodically and at least once in three months. Bridge and engine watch keepers **MUST** be familiar with the change-over procedures from main to emergency steering gear and operation in emergency mode.

Clear written emergency change over instructions **MUST** be posted at relevant locations for bridge and engine watchkeepers on actions that need to be taken.

M.5 All watch-keeping engineers **MUST** be familiar with local and emergency manoeuvring procedures of the main engine. Local and emergency manoeuvring **MUST** be tested during emergency manoeuvring drills, which **MUST** be carried out periodically and at least once every three months.

Local and emergency manoeuvring instructions **MUST** be posted at all manoeuvring stations.

M.6 It is **Strongly Preferred** that senior engineering officers (Chief Engr and 2nd Engr) undergo a recognized industry training course in main engine manoeuvring and controls.

M.7 All Vessels **MUST** have a Planned Maintenance System (PMS) in place with maintenance routines based on manufacturer’s recommendation and vessel experience. It is **Strongly Preferred** that the Planned Maintenance System (PMS) is Class approved.

M.8 Vessels **MUST** have a weekly test Program for communication equipment, lighting, emergency tools and local gauges at the local and emergency steering and manoeuvring stations.

M.9 During engine stand-by conditions and manoeuvring (including thruster operations) in constrained or congested waters, vessels **MUST** have sufficient reserve electrical power available from running electrical generators such that if one were to fail, it would not affect the manoeuvrability of the vessel.

M.10 The relevant procedure covering the action and recovery to be taken in case of ship’s loss of electrical power (black out) **MUST** be posted on the bridge, Engine Control Room (ECR), main switch board and emergency switch board for ready reference, as applicable.

M.11 During engine stand-by conditions and when manoeuvring in constrained/congested or security sensitive waters, the vessel operators **MUST** have identified engine room manning criteria specified in their Safety Management System.

M.12 Vessels **MUST** have a clearly identified list of critical systems and critical alarms which are crucial for the operational safety and manoeuvrability of the vessel.
M.13 Watchkeepers MUST have a clear understanding of actions to be taken for various critical alarms and trip indicators on the bridge and engine rooms.

M.14 Roles and responsibilities for maintaining these critical systems (M.13 criteria) MUST be identified on-board and ashore. Critical systems include the main propulsion system and steering gear (see also TMSA Element 4). All vessels MUST have defined schedules within their PMS to test these critical systems and its alarms and trips.

M.15 There MUST be procedures in place on-board vessels to address failure, disarming or deactivation of any critical system, alarm, control or shutdown. These procedures MUST clearly identify how to address short term and long term defects.

M.16 The vessel MUST establish and carry minimum spares for critical systems and alarms.

M.17 The vessel operator MUST identify instruments critical to the safe and efficient operation of the ship’s machinery, and their functionality MUST be verified at regular intervals with approved calibration equipment or by a certified calibration company.

M.18 Vessels MUST have the fuel quality tested by an independent laboratory prior to putting fuel into use. This fuel quality assessment test MUST include both Marine Gas Oil (MGO) and Heavy Fuel Oil (HFO). It is Strongly Preferred that vessels subscribe to a fuel quality assessment Program.

M.19 Vessels MUST subscribe to a regular lube oil analysis Program by an independently recognized organization, in which a minimum the lube oil of the main engine, diesel generators, steering gear, stern tube, deck hydraulic machinery (winches, windlass, cranes etc.) and cargo hydraulics valves system are tested. It is Strongly Preferred that the regular testing period should not exceed three months.

M.20 Vessels MUST carry an on-board water content meter to check the water content in machinery circulatory lube oil systems of the main engine, diesel generators and steering every month.

It is Strongly Preferred that the vessel also has on-board meters to check the viscosity and Total Base Number (TBN) content in Machinery lube oil systems of the main engine, diesel generators and steering gear every month.

M.21 All flexible pressure hoses in the engine room MUST be identified and MUST be included in the on-board maintenance and inspection schedule.

It is Strongly Preferred that expansion joints in the high-temperature cooling water system of main and auxiliary machinery should have a replacement and maintenance schedule in the PMS.

M.22 Vessels MUST have a Defect Reporting System (DRS) in place. DRS on-board MUST have the capability of recording reported defects, follow-ups and close out.

It is Strongly Preferred that the DRS is incorporated within the on-board PMS.

M.23 The vessel MUST follow a documented inventory system of spares for on-board machinery. There MUST be objective evidence that this is kept up to date.

M.24 There MUST be evidence that machinery or equipment under maintenance or repair has been satisfactorily tested on completion of repairs.

M.25 Vessels MUST have a procedure to test the operation of all standby machinery auto start functions.

M.26 For vessels which have the capability to synchronize the emergency switchboard with the main switchboard, the emergency generator MUST be tested on load and for a reasonable period of time at least once a month. For all other vessels that do not have this capability, the
emergency generator **MUST** be tested on load and for a reasonable period of time, at least once every three months.

The procedure to carry out the test of the emergency generator at reasonable load **MUST** be posted near the emergency generator.

M.27 Vessels **MUST** have weekly program in place for testing emergency and critical equipment and machinery such as the emergency generator, fire pump, compressor, lighting, fire detection and alarm system etc.

In addition to the above tests, checks **MUST** also be performed on fuel oil tank, lube oil and sump tank, cooling water tank level gauges and battery pack etc.

M.28 A bunker transfer procedure for daily bunker transfers **MUST** be in place. This **MUST** be read and understood by the watch-keeping engineers.

M.29 A bunker plan **MUST** be prepared by the vessel prior to the commencement of bunkering operations. The individuals involved in the process **MUST** have a clear understanding of the procedures, their responsibilities, and actions to be taken in an emergency. A formal risk assessment **MUST** be carried out or an existing one reviewed prior to bunkering operations.

Vessels conducting bunkering operations from a bunker barge alongside a scheduled load or discharge berth **MUST** conduct a risk assessment identifying risks associated with simultaneous operations, including identifying critical phases of cargo operations. Vessel **MUST NOT** conduct any other (non-cargo) operations simultaneously during such critical cargo operations.

M.30 Bunker procedures **MUST** address potential dangers associated with a toxic gas such as Hydrogen Sulfide (H₂S) in the fuel. It is **Strongly Preferred** that the maximum H₂S content in the bunkers to be supplied is specified by the vessel operators.

M.31 Vessels **MUST** have clear written procedures for boiler operations and maintenance, including the exhaust gas economizer. These **MUST** include instructions for emergency operations specific to the vessel.

M.32 Vessels **MUST** carry sufficient spares and have PMS procedures in place to carry out regular checks and maintenance on intrinsically safe and explosion proof equipment and lighting.

M.33 Vessel’s Safety Management System **MUST** identify risks associated with working on electrical equipment and include appropriate safeguards against those identified risks, including providing instructions on precautions to be taken when working on ‘high voltage’ and ‘live’ electrical equipment. The Safety Management System **MUST** address safeguards related to activities such as troubleshooting on live switchboards and the use of electrical test panels, if applicable.

M.34 Vessels which have been converted to comply with sulphur emission regulations **MUST** have procedures in place for the use of Low Sulphur Marine Gas Oil (LSMGO) in Boilers.

(Reference – INTERTANKO and OCIMF Guidance Paper on using LSMGO in Marine Boilers.)
SECTION N GENERAL APPEARANCE AND CONDITION

N.1 All vessel equipment and areas MUST be properly maintained, clean, painted, and in good fabric condition. All equipment MUST be in good working order.

N.2 Hull markings MUST be correctly placed and clearly visible.

N.3 All working area decks MUST have clearly identified and distinguished marked non-slip surfaces.

N.4 The general condition of service pipe work MUST be satisfactory and it MUST be free from corrosion, pitting and soft patches or other temporary repairs.

N.5 All deck openings, including watertight doors and portholes, MUST be in a satisfactory condition and capable of being properly secured.

N.6 All fuel, ballast, space vents and air pipes MUST be clearly marked to indicate the spaces they serve.

N.7 All alleyways and escape routes MUST be free of obstructions and their exits MUST be clearly marked.

N.8 All public spaces, including smoke rooms, mess rooms, sanitary areas, food storerooms, food handling spaces, refrigerated spaces, galleys, and pantries MUST be clean, tidy and in a hygienically satisfactory condition.

N.9 Personnel alarms in refrigerated spaces MUST be maintained in good order. These alarms MUST be tested periodically and records maintained.
SECTION P SHIP TO SHIP TRANSFER SUPPLEMENT

P.1 All ship to ship transfers **MUST** be conducted per the ICS/OCIMF/SIGTTO/CDI Ship to Ship Transfer Guides for Petroleum, Chemicals and Liquefied Gases.

[VPQ 13.1.1]

P.2 The Master and at least two Deck Officers **MUST** have previous appropriate experience in Ship to Ship (STS) operations.

P.3 Vessels **MUST** establish risk assessments for STS operations. These **MUST** include consideration of the constraints of the location, sea room, weather, seasonal constraints, spill response capabilities, comparison of vessel sizes, use of support vessels and experience of vessels’ personnel.

STS locations **MUST** be subjected to a risk assessment and approved by the vessel operator.

LIGHTERING IN THE GULF OF MEXICO (GOM)

P.4 Special SRM criteria apply for STS Lightering in the Gulf of Mexico (GOM). The criteria may be obtained from SRM at the following email address: **DS-SRM-Vetting@exxonmobil.com**
SECTION Q ICE OPERATIONS
(Applicable to Vessels with an Ice Class Notation or Valid Winterization Certificate)

Q.1 The vessel’s Safety Management System MUST identify risks associated with operations in sub-zero and ice conditions, and provide appropriate safeguards against those identified risks, including, procedures for personnel training, navigation, management of cargo and ballast system, operations and preparation of equipment including firefighting and lifesaving appliances in such conditions.

[VIQ 13.1]

Q.2 Vessels MUST have means to prevent the icing up of cargo tank primary and secondary venting arrangements; air ventilation to settling and service tanks required for the operation of the main propulsion plant and essential auxiliaries. It is Strongly Preferred that there are means to prevent icing up of air vents for ballast, bunker and fresh water tanks.

[VIQ 13.19 &13.20]

Q.3 Vessels MUST have means to keep at least one machinery space sea water inlet ice-free.

[VIQ 13.5]

Q.4 Vessels MUST have means provided for ice observation and detection. Such means may include searchlight of a narrow beam type, thermal imaging, ice radar or a visual lookout forward, this includes specific training to identify types of ice and the relative threat that ice poses given the vessels intended operations.

[VIQ 13.2]

Q.5 One of the radars fitted MUST be of a type classed as being suitable for sub-zero temperatures.

[VIQ 13.11]

Q.6 Systems MUST be in place for the routine receipt of navigational, meteorological and environmental data, including ice data and ice charts.

[VIQ 13.3]

Q.7 Personal Protective Equipment (PPE) provided MUST be suitable for sub-zero conditions.

[VIQ 13.7]
SECTION R CHEMICAL CARRIER SUPPLEMENT

The following minimum safety criteria for chemical carriers are additional to criteria described in the previous sections.

R.1 Material Safety Data Sheets (MSDS) specific to the particular product grade MUST be available for all chemical products on-board.

[VIQ 8.21]

R.2 Vessels MUST have written procedures and supporting technical drawings for cleaning and emission control of the cargo system.

[VIQ 8.21 & 8.30]

R.3 It is Strongly Preferred that vessels are provided with closed process samplers which are to be connected to fixed sampling points installed at pump stacks and manifolds etc. for sampling toxic chemical cargoes.

R.4 When handling chemicals not previously carried either by the vessel operator or on the vessel, a review of the safety aspects and handling procedures MUST be carried out by the vessel operator and any change in procedures communicated to the vessel.

R.5 All officers MUST be familiar and aware of the dangers associated with tank cleaning and ventilation operation after carriage of volatile or toxic products. A responsible officer MUST develop a tank cleaning plan prior to cleaning operation. All tank cleaning operations MUST be supervised by a responsible officer.

[VIQ 8.30 & 8.31]

R.6 Appropriate PPE suitable for the grade of cargo carried and associated hazards MUST be provided, maintained and used by all crew members.

[VIQ 8.86]

R.7 Showers and eye baths MUST be provided, easily accessible on deck, capable of operating in all ambient conditions likely to be encountered, regularly tested, and available at all times.

[VIQ 8.85] [IBC14.3.4]

R.8 Vessels MUST carry emergency procedures that cover, as a minimum, action to be taken in the event of chemical spill and pollution.

[VIQ 8.20 & 8.28]

R.9 An updated pipeline and mimic diagram of the cargo, inert gas and venting systems MUST be displayed in the cargo control room.

[VIQ 8.3]

R.10 Cargoes which do not require heating MUST be isolated by blind flange from the heating system.
SECTION S GAS CARRIER SUPPLEMENT

The following criteria are to be applied to LPG, LNG and chemical gas carriers and are additional to criteria described in the previous sections.

S.1 Vessels **MUST** have, readily available, full details about the cargoes being carried including stowage plans and compatibility tables. Vessel Operators **MUST** inform IMT if the vessel has Certificate of Fitness to carry cargoes other than liquefied gasses.

S.2 Gas carriers, particularly LNG carriers, **MUST** be aware of the phenomena of ‘rollover’ and have procedures on-board outlining the hazards and appropriate precautions.

S.3 It is **Strongly Preferred** that LPG and chemical gas carriers are fitted with an Emergency Shutdown (ESD) pendant cable. Where fitted, the system **MUST** be tested and used.

LNG carriers **MUST** be fitted with an ESD link. Where provision is available for linking ship and shore ESD systems, the system **MUST** be tested and used.

Ref: SIGTTO - ESD Arrangements and Linked Ship/Shore Systems FOR Liquefied Gas Carriers

S.4 Cargo-related pressure relief valves, alarms, trips, and emergency shutdown systems (ESD) **MUST** be used and maintained in accordance with the manufacturers’ instructions and covered by a routine testing program with records maintained on-board.

S.5 All cargo ullage, temperature and pressure monitoring instrumentation and cargo plant instrumentation **MUST** be regularly tested and calibrated, with records kept on-board.

S.6 Cargo (liquid and vapor) pipelines **MUST** be maintained in good working order with no leaks. Insulation, where fitted, **MUST** be intact. Provision **MUST** be made to protect piping from excessive stresses due to temperature changes and movement of tanks and equipment to which the piping is attached.

S.7 It is **Strongly Preferred** that all liquid cargo pipelines are free of expansion joints or bellows. Where expansion joints or bellows are unavoidable, such as on Moss type vessels, then they **MUST** be subject to approval from the Classification Society.

S.8 All liquid cargo lines, including accessory and instrumentation lines and up to and including isolation valves on these small lines, **MUST** be constructed with welded or flanged connections. Flanged connections, as far as practical, shall be kept to a minimum. Final connections on to pressure transmitters or pressure gauges may be screw-threaded provided an isolation valve is fitted as above.

S.9 Cargo segregation **MUST** be achieved without risk of liquid to vapor crossover.

S.10 Inert gas system piping **MUST** be completely independent and segregated from the cargo system.

S.11 Liquid spill containment arrangements **MUST** be appropriate for the range of cargoes carried and suitable for low-temperature cargoes, where applicable.

S.12 There **MUST** be a system in place to routinely monitor and test, in accordance with the manufacturer’s instructions, all gas tight seals fitted between the compressor room and motor room where these are separated by a bulkhead or deck.

S.13 Airlocks fitted to electrical motor rooms in the gas hazardous zone of the vessel **MUST** have a system for periodic testing of alarms, trips, and interlocks fitted to the vessel.

S.14 All earth bonding and continuity straps **MUST** be in good condition.
Where LNG carriers use cargo as fuel, they **MUST** have procedures on-board to ensure compliance with the requirements of the International Code of the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC Code) Ch.16 and precautions outlined in the ICS Tanker Safety Guide (Section 4.9.3.).

Procedures should cover the whole system operation, and the routine testing and maintenance of the whole system, including such instrumentation which ensures the integrity of the fuel gas supply line (IGC Code 16.3).

Documented records of the tests and maintenance carried out on the system **MUST** be maintained on-board.

Cargo transfer systems MUST be tested annually to the ‘working pressure’ which is the highest pressure the vessel would experience in normal, steady state operations. Vessels **MUST** have on-board records verifying these tests have been completed. Records of individual cargo valve maintenance and tests **MUST** be kept on-board and available.

Gas carriers carrying toxic gasses MUST have at least three personal toxic gas meters capable of detecting such toxic gas concentrations and used by the crew members during the cargo operations.

The vessel operator **MUST** have documented procedures for LPG and chemical gas carriers that address the following, as a minimum:

1. Dedicated cargo sampling arrangement system;
2. Drain valve arrangement;
3. Testing of valves; and
4. Sampling hoses.

(Ref: SIGTTO - Liquefied Petroleum Gas Sampling Procedures.)
APPENDIX A: ADDITIONAL CRITERIA FOR TERM CHARTERED TONNAGE.

GENERAL INFORMATION

The following criteria for vessels wishing to be directly employed in ExxonMobil affiliate term charter business are additional to those described in the preceding sections. It should be noted that any deviation from the full requirements will be subject to review on a case-by-case basis and will be dependent on the size of vessel, type of vessel and products carried and trading area.

ADDITIONAL REQUIREMENTS

REPORTING REQUIREMENTS

All vessels employed under the terms and conditions of ExxonMobil affiliate term charter are required to submit within the first week of every month ‘Key Performance Indicators’ (KPI's) for the previous month. These are to be sent directly to the Chartered Tonnage Team Lead by e-mail to msterm@exxonmobil.com. The exact reporting requirements will be provided prior to the vessel being employed.

THIRD PARTY VESSEL INSPECTIONS

All term chartered vessels shall be inspected (SIRE) by IMT prior to delivery or lifting of technical subjects. Thereafter, all term chartered vessels MUST be inspected (SIRE) at an interval not exceeding SIX months; of which every alternate inspection (SIRE) will be carried out by an IMT appointed inspector.

Term charter vessel inspections (SIRE) are to be requested by contacting the Chartered Tonnage Team Lead via the email address: msterm@exxonmobil.com. Vessel operators MUST make adequate and timely arrangements to meet the above requirements. Vessel operators MUST also ensure that the respective vessels are available to be inspected by the IMT appointed inspector if so requested.

IMT may also carry out on-board TMSA, Physical MESQAC compliance checks and security inspection on-board ExxonMobil term chartered vessels as and when necessary.

REPORTING INCIDENTS

An incident notification related to ExxonMobil affiliate term chartered vessel MUST also be copied to msterm@exxonmobil.com.

SECTION A. GENERAL INFORMATION

No additional criteria.

SECTION B. CREW MANAGEMENT

B.1a Master and Deck Officers serving on term chartered vessels MUST have successfully completed an industry recognized cargo handling simulator course appropriate to the vessel type at intervals not exceeding five years.

B.2a Master and senior Deck Officers serving on term chartered vessels MUST have successfully completed an industry recognized ship-handling simulator course appropriate to the manoeuvring characteristics of the vessel size and type at intervals not exceeding five years.

B.3a The vessel operator MUST have implemented a Behaviour Based Safety Program.
SECTION C. CREW MATRIX REQUIREMENTS

C.1a For term chartered vessels, the crew matrix requirement mentioned within section C is a MUST and in addition, it is a MUST that the experience of senior officers and engineers with the vessel operator to be:

<table>
<thead>
<tr>
<th>Experience</th>
<th>Senior Deck Officers Master + Chief Off. (Combined)</th>
<th>Senior Engineers Chief Engr. + 2nd Engr (Combined)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>> Three (3) Calendar Years</td>
<td>> Three (3) Calendar Years</td>
</tr>
<tr>
<td></td>
<td>Of the three (3) years combined, Master should have</td>
<td>Of the three (3) years combined, Chief Engineer</td>
</tr>
<tr>
<td></td>
<td>minimum six (6) months and Chief Off. should have</td>
<td>should have minimum six (6) months and 2nd</td>
</tr>
<tr>
<td></td>
<td>minimum six (6) months</td>
<td>Engineer should have minimum six (6) months</td>
</tr>
<tr>
<td></td>
<td>(Sea Time)</td>
<td>(Sea Time)</td>
</tr>
</tbody>
</table>

C.2a It is MUST that the senior officers are given individual briefings by the vessel operator’s senior management to re-iterate company philosophy, expectations, KPIs and officers’ responsibilities prior to joining the vessel.

SECTION D. NAVIGATION:

D.1a On vessels over 160k DWT, a dual axis Doppler sonar speed log MUST be fitted.

D.2a On vessels over 50k DWT a rate of turn indicator MUST be fitted.

D.3a Vessels MUST be fitted with bridge wing repeaters for:

- Rudder angle;
- Speed log;
- Propeller RPM; and
- Pitch indication (where applicable)

D.4a The magnetic compass MUST be fitted with an off-course alarm facility.

D.5a Every vessel MUST have a steering system that complies with:

- SOLAS 11/1 Regulation 29 Paragraph 16; or
- Paragraph 20, if built prior to 1st September 1984,

D.6a Vessels MUST have two gyro compasses or, one gyro compass and one transmitting magnetic compass.

[VPQ 4.1.1.3]

D.7a Vessels MUST be fitted with a depth finder with the capability of recording, a digital display and alarm setting facility.

[VIQ 4.10.34]

D.8a Vessels MUST be fitted with two GPS units.
D.9a Vessel operator **MUST** carry out annual real time navigation audit by a competent external third party service provider.

D.10a The vessel operator **MUST** have a policy on the training of the Chief Officer in ship-handling under Master’s guidance.

SECTION E. SAFETY AND SECURITY MANAGEMENT

E.1a Vessels **MUST** be fitted with an anemometer display or monitoring repeater in the CCR with the capability to record (paper or digital) wind speed and direction, and designed to be capable of setting a minimum of two desired wind speed limits with audible and visual alarms in the CCR and on deck if the set limits are exceeded.

Dynamic Positioning (DP) vessels **MUST** have additional anemometer displays in the Engine Control Room (ECR)

E.2a Personal multiple gas detecting alarm units **MUST** be used by each person working in a potentially hazardous area, including: on deck during cargo, bunkering, tank cleaning, gas freeing, purging and inerting operations, and entry to tanks, enclosed space, and pump rooms.

E.3a Double hull vessels **MUST** be fitted with fixed gas detection system with recorders to sample for flammable atmospheres in all ballast tanks, cofferdams, or other such spaces within the hazardous zones of the vessel where flammable vapor can accumulate.

SECTION F. POLLUTION PREVENTION

F.1a Mechanical type scupper plugs **MUST** be fitted in the deck edge fishplate.

F.2a For vessels that have the option, deck dump valves with loop seals into the slop tanks **MUST** be provided. For vessels where deck dump valves are not an option, at least 2 suitably sized non-sparking spill pumps **MUST** be provided. The discharge to the slop tank **MUST** be hard piped, with suitable connections along the deck to accommodate spill location. Unless otherwise stated in the manufacturer’s instructions, these portable pumps **MUST** be earthed at all times.

For gas carriers, at least 2 suitably sized non-sparking spill pumps **MUST** be provided with sufficient storage space on-board to collect or contain oil spilled on deck.

F.3a Vessels delivered after 30th November 2017 **MUST** be constructed with double hull (double side shell and bottom) cargo tanks, bunker tanks, lube oil tanks and other tanks and spaces containing any type of pollutants (MARPOL Annex 1 and 2 in its form or if mixed with water).

F.4a Vessels **MUST** be provided with adequate means for quick sampling and visual inspection of the segregated ballast waters for any oil contamination prior to discharge.

F.5a It is **Strongly Preferred** that vessels install additional independent tamper-proof equipment that samples the overboard discharge between the Oily Water Separator (OWS) and the OWS overboard valve, and records (as a minimum) oil content, flow through the oil content monitor, flow overboard, overboard valve position, vessel GPS position, and time.

SECTION G. STRUCTURAL CONDITION

G.1a Where Thermo-Mechanical Controlled Process (TMCP) steel is employed it is **Strongly Preferred** that at least the bottom plating of all cargo tanks are protected by a hard coating.

G.2a Aluminium anodes are **NOT** permitted in ballast tanks.

G.3a For vessels built to classification rules other than the Common Structural Rules (CSR) for Double Hull Oil Tankers, the use of high-strength steel should be limited to no more than 30%
of the vessel's steel weight. If this is exceeded, a structural analysis **MUST** be carried out by a recognized Classification Society. The analysis should incorporate a fatigue analysis that takes into account the anticipated trading pattern of the vessel.

SECTION H. CARGO AND BALLAST SYSTEMS:

H.1a The vessel **MUST** have MARPOL Segregated Ballast Tanks (SBT). If double-hulled, the vessel **MUST** have a continuous longitudinal bulkhead in the cargo tanks in addition to the longitudinal bulkheads forming the cargo block (this does not apply to vessels with cargo wing tanks).

H.2a The vessel **MUST** be capable of handling at least three grades of cargo whilst maintaining double valve segregation between grades.

H.3a The vessel **MUST** be equipped with at least three operational main cargo pumps. Reciprocating main cargo pumps are **NOT** acceptable.

H.4a Cargo manifolds, bunker connections, vapor recovery connections and lifting equipment **MUST** meet OCIMF 'Recommendations for Oil Tanker Manifolds and Associated Equipment'. Class approved vapor recovery connections **MUST** be provided forward and aft of the cargo manifolds.

For gas carriers, the cargo manifolds **MUST** meet SIGTTO recommendations.

H.5a Cargo valves on the manifold, sea-chest, and pump room bulkhead **MUST** be steel or approved ductile iron.

H.6a The vessel **MUST** be fitted with a Cargo Control Room (CCR) with centralized cargo pump control, valve operation and remote tank level gauges and alarms.

H.7a Automatic fixed tank gauges, tank level measuring devices and independent high-level alarms **MUST** be installed in all cargo, slop and bunker tanks (including storage, service, and settling tanks) with remote readout and alarms in the CCR. Automatic fixed tank gauges for all cargo, slop and bunker tanks (including storage, service, and settling tanks) **MUST** be calibrated and certified by a recognized company at intervals not exceeding five years.

H.8a Term charter vessels **MUST** have heating coils fitted in cargo slop tank(s)

H.9a Vessels **MUST** have a fixed system to monitor for flammable atmospheres in the cargo pump room(s), cofferdams and other spaces adjacent to the cargo block. (For example, ballast spaces on double side or double bottom vessels where explosive vapours may accumulate, sensors **MUST** be fitted at the top and bottom of the pump room).

H.10a In addition, if carrying cargoes that may contain H₂S, the vessel **MUST** have a fixed system to monitor for H₂S in the pump room.

H.11a The vessel **MUST** be fitted with a cargo tank pressure monitor display and alarm unit on the bridge in addition to the display and alarm unit installed in the cargo control room (H.29)

SECTION J. INERT GAS AND CRUDE OIL WASHING SYSTEM REQUIREMENTS:

J.1a The vessel **MUST** have individual pressure/vacuum devices on each tank capable of venting at the maximum tank rate during loading or discharging.

J.2a A stand-by oxygen (O₂) analyser **MUST** be permanently fitted as an additional IGS O₂ analyser to serve as a back-up means in case of failure of the main O₂ analyser.
SECTION K. MOORING

K.1a: Vessels outfitted for mooring at SPMs **MUST** be fitted with Bow Chain Stoppers.

Refer to:

The OCIMF ‘Recommendations for Equipment Employed in the Bow Mooring of Conventional Tankers at Single Point Moorings’ and OCIMF ‘Mooring Equipment Guidelines’

SECTION L. COMMUNICATIONS

- No additional criteria.

SECTION M. ENGINE ROOM AND STEERING GEAR

- No additional criteria.

SECTION N. GENERAL APPEARANCE

- No additional criteria.

SECTION P. SHIP TO SHIP TRANSFER SUPPLEMENT

- Criteria to be determined by the trade.

SECTION Q. ICE OPERATIONS – APPLICABLE TO VESSELS WITH AN ICE CLASS NOTATION OR VALID WINTERIZATION CERTIFICATE

- Criteria to be determined by the trade.

SECTION R. CHEMICAL CARRIER SUPPLEMENT

- No additional criteria.

SECTION S. GAS CARRIER SUPPLEMENT

- No additional criteria.

SECTION U. ENERGY EFFICIENCY AND FUEL MANAGEMENT

U.1a Vessels **MUST** have systems and practices which will foster the pursuit of energy efficiency and Green House Gas (GHG) reduction.

The objective is to have a proactive approach to energy efficiency and fuel management that includes improvement of vessel and voyage efficiencies aimed at reducing GHG emitted by use of auditable, prioritized methodologies.

Systems will include identification of roles and responsibilities, with targets and methods for monitoring performance.

U.2a It is **Strongly Preferred** that the vessel be outfitted with a Vessel Performance Monitoring System (VPMS) that complies with the requirements of the most recent version of ISO 19030 Part 2.

U.3a In order to measure progress, a baseline criterion is to be established. For compliance, management tools such as IMO recommended Energy Efficiency Operational Index (EEOI) MEPC Circ 684 may be adopted.
U.4a To enable monitoring, real-time performance monitoring processes could be used by both vessel and shore office, thus enabling implementation of prompt corrective action and comparison with similar vessels. This may provide benchmarking related to energy efficiency and process improvement.

SECTION V. GAS-FUELLED VESSELS SUPPLEMENT

V1.a: It is Strongly Preferred that the bunkering procedures are developed considering applicable recommendations of the Society for Gas as a Marine Fuel (SGMF)'s guideline.

V2.a: It is Strongly Preferred that the vessel and bunkering source be fitted with a single, common Emergency Shut-Down (ESD) cable.
APPENDIX B: DRUG AND ALCOHOL DECLARATION

Drug and Alcohol Policy (sample)

Blanket Declaration

To: International Marine Transportation

Email: MSOWNER@exxonmobil.com

Re: Drug and Alcohol Policy

The undersigned warrants and represents that it has a policy on Drug and Alcohol Abuse (‘Policy’) applicable to all tanker vessels which the undersigned now owns and/or operates and which, after the date of this certificate, the undersigned may own and/or operate. This Policy meets or exceeds the standards in the Oil Companies International Marine Forum Guidelines for the Control of Drugs and Alcohol On-board Ship. Under the Policy, alcohol impairment shall be defined as a Blood Alcohol Content (BAC) of 40 mg/100ml and equivalent alcohol in breath or greater; the appropriate seafarers to be tested shall be all vessel officers and ratings. The drug/alcohol testing and screening shall include unannounced testing in addition to routine medical examinations.

An objective of the Policy should be that the frequency of unannounced testing be adequate to act as an effective abuse deterrent, and that all officers and ratings be tested at least once a year through a combined program of unannounced testing and routine medical examinations. The policy must be such that it meets the objective of always ensuring that prior to going on scheduled duty the blood alcohol content of the seafarer is theoretically zero.

The undersigned further warrants that the Policy will remain in effect unless you are otherwise specifically notified and that the undersigned shall exercise due diligence to ensure compliance with the Policy. It is understood that an actual impairment or any test finding of impairment shall not in and of itself mean the undersigned has failed to exercise due diligence.

Vessel Operator / Technical Manager based in the USA with USA flag vessels that are required to comply with USCG D&A regulations will be treated as compliant with ExxonMobil D&A requirement. The same applies to Canadian-based vessel operator and their registered vessels.

The undersigned understands and acknowledges that while the provision of and compliance with this declaration is a necessary condition for the Vessel to perform ExxonMobil affiliate service**, it does not automatically qualify the vessel to perform ExxonMobil affiliate service**, which is the subject of a separate review by ExxonMobil’s independent marine quality assurance organization.

** Please note that, in this context, ‘ExxonMobil affiliate service’ includes but not limited to: Chartered by ExxonMobil affiliate or carrying ExxonMobil affiliate cargo, or calling at ExxonMobil affiliate facilities, or Third Party facility, or at facilities in which ExxonMobil affiliate have a joint venture interest to load or discharge.

Technical Operator Name:

Technical Operator IMO Number:

Person signing on behalf of Company:

Title or Authority held by person signing:

Date:

MARINE ENVIRONMENTAL, SAFETY AND QUALITY ASSURANCE CRITERIA
FOR
INTERNATIONAL OCEAN/SEAGOING TANKER VESSELS IN EXXONMOBIL AFFILIATE SERVICE
2017 EDITION
APPENDIX C: MESQAC COMPLIANCE DECLARATION

Marine Environmental, Safety and Quality Assurance Criteria (MESQAC) for Seagoing Tanker vessels in ExxonMobil Affiliate Service

(Sample)

Blanket MESQAC 2017 Compliance Declaration

To: International Marine Transportation

Email: MSSCREEN@exxonmobil.com

Re: MESQAC Compliance Declaration

This document is the undersigned vessel operator's (technical manager's) confirmation of its understanding and compliance with the Marine Environmental, Safety and Quality Assurance Criteria (MESQAC) for seagoing tanker vessels offered for ExxonMobil affiliate service**

The undersigned vessel operator / technical manager warrants that it currently complies with and shall exercise due diligence to maintain compliance with such requirements while on ExxonMobil affiliate service.

The undersigned vessel operator / technical manager further warrants that all listed vessels*, operated by the undersigned meet or exceed the requirements and standards in the MESQAC for seagoing vessels, including appendix A for vessel(s) on time charter to ExxonMobil. If additional vessel(s) enter service the undersigned will submit an updated Blanket Declaration for the vessel(s).

The undersigned vessel operator / technical manager acknowledges that third party operated vessels that do not meet the ‘MUST’ criteria will not be considered for ExxonMobil affiliate service, unless meeting certain of these criteria involves gas freeing or dry docking the vessel, or requires long lead times, in which case a limited period for further consideration of the vessel may be granted upon receipt of written confirmation that actions will be taken at the earliest opportunity, and an approved mitigating measure is in place. The undersigned further acknowledges that third party operated vessels not meeting those environmental and safety expectations described as ‘Strongly Preferred’ may be disadvantaged in the selection process versus other vessels meeting those requirements.

The undersigned also understands and acknowledges that while the provision of and compliance with this declaration is a necessary condition for the Vessel to perform ExxonMobil affiliate service, it does not automatically qualify the vessel to perform ExxonMobil affiliate service, which is the subject of a separate review by IMT marine quality assurance organization.

** Please note that, in this context, ‘ExxonMobil affiliate service’ includes but not limited to: Chartered by ExxonMobil affiliate or carrying ExxonMobil affiliate cargo, or calling at ExxonMobil affiliate facilities, or Third Party facility, or at facilities in which ExxonMobil affiliate have a joint venture interest to load or discharge.

Technical Operator Name:

Technical Operator IMO Number:

Person signing on behalf of Company:

Title or Authority held by person signing:

Date:
Marine Environmental, Safety and Quality Assurance Criteria (MESQAC) for Seagoing vessels in ExxonMobil Affiliate Service

Blanket MESQAC 2017 Compliance Declaration

*Listed MESQAC Compliant Seagoing Vessels

Name of Technical Operator: ____________________________

<table>
<thead>
<tr>
<th>IMO No.</th>
<th>Vessel Name</th>
<th>Compliant Yes / No</th>
<th>MUST Criteria’s not met</th>
<th>Date expected to be fully compliant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mitigation steps for not meeting MUST criteria’s that operator plans to address but require lead time / dry dock (As applicable)

MUST Criteria: _______ Vessel Name(s): __

Mitigation Step:

__

__

__

MUST Criteria: _______ Vessel Name(s): __

Mitigation Step:

__

__

__

Continue on next page(s) as required